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Machine Learning Applications




Machine Learning Applications
Sensitive Input

Please comment and write the documentation for the following
codeblock:

void super_secret_function() {

Certainly! Here's the code and its documentation:

Code:

B Copy code

A




Machine Learning Applications
Classical cryptosystems

Client side Server side
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Machine Learning Applications
Classical cryptosystems
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Fully Homomorphic Encryption (FHE)

Client side computations Server side
on encrypted
data
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Fully Homomorphic Encryption (FHE)

Definition

Homomorphism: structure-preserving map

f:A— B

f(a+ b) = f(a) @ f(b) )
Example Example

f(x) = |x| RSA: ¢ = m® mod N

f(a- b) = f(a) - f(b) [T; i = IT;mf = (I];mi)° mod N
Definition

Fully Homomorphic Encryption (FHE) Scheme:
D(E(a) ® E(b)) =a+ b
D(E(a) ® E(b)) =ax b

.




Machine Learning Applications

FHE
Client side Server side
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Fully Homomorphic Encryption (FHE)

Efficiency Efficiency
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Security Accuracy Security Accuracy
Ideal World Real World

Further challenges:
FHE operations are orders of magnitude more complex
Only additions and multiplications of ciphertexts are possible



Data Owner Model Owner

a0 @3
input data
model
Design Goals
input model

Broad model support

Abstraction of cryptographic details £
Previous work

NN inference for specific networks [BGBE19]

Include other techniques, e.g. SMPC [HLHD22, LMSP21]

Individual ML framework support: TensorFlow [RRK*20], PyTorch [KVH'21]
HE-MAN

ONNX model input format

FHE engineering

Crypto details are abstracted away from the user
Results: accuracies close to cleartext numbers, at increased runtime

Privacy-Preserving ML

result reward

$
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HE-MAN

https://dl.acm.org/doi/10.1145/3589883.3589889
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HE-MAN

https://github.com/smile-ffg/he-man-tenseal
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HE-MAN
Architecture

HE-MAN-Concrete

Concrete
(Rust)

TFHE
TFHE

FHE Library

Base Library
Scheme

HE-MAN-TenSEAL

TenSEAL
(Python)

[

SEAL
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J
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ONNX in HE-MAN

So far implemented
AddOperator
AveragePoolOperator
ConstantOperator
ConvOperator
FlattenOperator
GemmOperator
MatMulOperator
MulOperator
PadOperator
ReluOperator
ReshapeOperator
SubOperator
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Linear operations in HE-MAN-TenSEAL

Convolution

Ciphertext = vector of encrypted values
Linear operations via vector-matrix multiplication

* = j [ ciphertext vector }

result input

input kernel matrix

kernels = { ciphertext vector

result
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Other tools

i= README.md

ZANA
Concrete ML

] Read documentation | ¢ Community support

release v1.1.0 | Learn |Tutorials and demos | Contribute

Concrete ML is a Privacy-Preserving Machine Learning (PPML) open-source set of tools built on top of Concrete by
Zama. It aims to simplify the use of fully homomorphic encryption (FHE) for data scientists to help them automatically
turn machine learning models into their homomorphic equivalent. Concrete ML was designed with ease-of-use in
mind, so that data scientists can use it without knowledge of cryptography. Notably, the Concrete ML model classes
are similar to those in scikit-learn and it is also possible to convert PyTorch models to FHE.
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Thank you!

O

https://github.com/smile-ffg/he-man-concrete

https://github.com/smile-ffg/he-man-tenseal

https://dl.acm.org/doi/10.1145/3589883.3589889
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Secure Machine Learning Application with Homomorphically Encrypted Data
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