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• HE-MAN framework & ONNX
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Machine Learning Applications
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Machine Learning Applications
Sensitive Input
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Machine Learning Applications
Classical cryptosystems

Client side Server side
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Machine Learning Applications
Classical cryptosystems
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Fully Homomorphic Encryption (FHE)

Client side Server sidecomputations
on encrypted

data
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• + and × ⇒ Fully Homomorphic Encryption (FHE)
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Fully Homomorphic Encryption (FHE)

Definition
Homomorphism: structure-preserving map
f : A → B
f (a + b) = f (a)⊕ f (b)

Example
f (x) = |x |
f (a · b) = f (a) · f (b)

Example
RSA: c = me mod N∏

i ci =
∏

i me
i = (

∏
i mi)

e mod N

Definition
Fully Homomorphic Encryption (FHE) Scheme:
• D(E(a)⊕ E(b)) = a + b
• D(E(a)⊗ E(b)) = a × b
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Machine Learning Applications
FHE

Client side Server side
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Fully Homomorphic Encryption (FHE)

Efficiency

Security Accuracy

Efficiency

Security Accuracy

Ideal World Real World

Further challenges:
• FHE operations are orders of magnitude more complex
• Only additions and multiplications of ciphertexts are possible
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Privacy-Preserving ML

Design Goals
• Broad model support
• Abstraction of cryptographic details

Previous work
• NN inference for specific networks [BGBE19]
• Include other techniques, e.g. SMPC [HLHD22, LMSP21]
• Individual ML framework support: TensorFlow [RRK+20], PyTorch [KVH+21]

HE-MAN
• ONNX model input format
• FHE engineering
• Crypto details are abstracted away from the user

Results: accuracies close to cleartext numbers, at increased runtime
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HE-MAN

https://dl.acm.org/doi/10.1145/3589883.3589889
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HE-MAN

https://github.com/smile-ffg/he-man-tenseal
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HE-MAN
Architecture

TFHE
TFHE

SEAL
BFV,CKKS

HE-MAN-Concrete HE-MAN-TenSEAL

Concrete
(Rust)

TenSEAL
(Python)

Our work

FHE Library

Base Library
Scheme

[CJL+20, CGGI16] [BRCB21, SEA22, CKKS17]
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ONNX in HE-MAN

So far implemented
• AddOperator
• AveragePoolOperator
• ConstantOperator
• ConvOperator
• FlattenOperator
• GemmOperator
• MatMulOperator
• MulOperator
• PadOperator
• ReluOperator
• ReshapeOperator
• SubOperator

.execute()
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Linear operations in HE-MAN-TenSEAL
Convolution

• Ciphertext = vector of encrypted values
• Linear operations via vector-matrix multiplication
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Other tools
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Thank you!

https://github.com/smile-ffg/he-man-concrete

https://github.com/smile-ffg/he-man-tenseal

�

https://dl.acm.org/doi/10.1145/3589883.3589889

Paper:
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SMiLe

Secure Machine Learning Application with Homomorphically Encrypted Data
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