%% ONNX Runtime

Breakthrough optimizations
for transformer inference on GPU and CPU

Emma Ning| Senior product manager, Microsoft

L

BEFORE

what can aggravate a concussion

All Irmages

POfiFacts About Concussion and Brain Injury

hitps.//'www.cdeo.govheadsup/ pdfs/providers/fac
yd Concussions ca

rapidly back and forth |

ur

from a fall or a blow to the body that ca

i5_about_concussion_thi-a pdf

uses the head to

[g

1

s

ove

b

what can aggravate a concussion

All

Images

AFTER

Suspect a Concussion? How to Help (Not Hurt) Your Recovery ...

hitps /Mealth clevelandchnic org/suspect-a-concussion-how-10-help-not-hurt-your-recovery ~
3 P ¥

rate n

Iy wWorsen yo

r sympto

0. B

"
o a4 oD

ms Stror

Excessive physical activity, An increased heart

rRoadng

Using cutting-edge NLP techniques like transformers

Bing Search Engine

to better understand user queries, webpages, and other documents

Transformer for natural language processing

e Transformers - breakthrough in natural language understanding

* BERT - Bidirectional Encoder Representations from Transformers
* Architecture (L: layers (transformer block), H:hidden size, A: self-attention head)
 BERT base: L=12, H=768, A=12, Parameters=110M
 BERT large: L=24, H=1024, A=16, Parameters=340M

* Running a 12- or 24-layer BERT for every query real-time is prohibitively

expensive

BERT optimizations in Bing

Finetuned BERT-Base,
a 12-layermodel

e Significantly improves
Precision and Coverage

)

Leveraged knowledge
distillation to create a

3-layered BERT

accuracy

¢ Reduced inference cost
significantly

serving latency on CPU

_

* No any significant loss in

o Still benchmarked at 77ms

)

Re-implemented the
model using TensorRT
C++ APIs

* Take full advantage of
NVIDIA GPU architecture

® 800x throughput
improvement on GPU

_

Problem - Reimplement the model was time-consuming

Transformer inference acceleration
with ONNX Runtime

BERT Optimization Opportunity

e Model

* Too many elementary operators

 Multi transformer cells

e Kernels in ONNX Runtime

* Not fully utilize hardware characteristic
* CPU cores

* Tensor-Core

L

 S——

(=)
Add & Norm

Feed
Forward

Nx f-" Add & Norm l

L

| S—

Multi-Head
Attention

T -,

J

Positional
Encoding

QR

Input
Embedding

T

Inputs

BERT optimization in ONNX Runtime

ONNX Model
ONNX RUNTIME ‘

Intermediate Representation (IR)

Graph Optimization (in general)
Graph Partitioning

User Graph Optimization (per Execution Provider) Inference
Results

Executor (SequentialExecutor/ParallelExecutor) ‘

Execution Providers

=)

CpuEP CudaEP TensorRTEP nGraphEP D

Graph optimization

Hardware-based kernel optimization

ONNX Runtime — Graph Optimization

' -GraphTransfurmer A ' -GraphTransfurmerManager A G ra p hTra nSfO rm e r
Clazs Class
r r * An interface created for finding patterns (with specific
b Fields 4 Fields . A .
i O, levelto transformer map.. nodes) and applying rewriting rules against a sub-graph.
@ Applylmpl « Methods * An interface created for applying graph transformation
@ GetCompatibleExecutionProviders @ ApplyTransformers . . ore
@ Name © Register with full graph editing capability.
Fi b Mested Types
public
| RuleBasedGraphTransformer A | | RewriteRule A | Graph Optimization Level
Clazs Class
-t GraphTransformer i . . .
| 7 . Basic: General transformers not specific to any specific
+ elds 4 Methods execution provider (e.g. drop out elimination)
®_ rules_ B — ©. Aool
a APRY . . o pe
¢ Methods ® Name Extended: Execution provider specific transformers
gﬂ Applylmpl @, SatisfyCondition
+ ApplyRulesOnNode > Nested Types Layout Optimizations: change the data layout for
@ Register

applicable nodes (NCHW layout to NHWC layout)

BERT Encoder Block

Positional embeddings

Multi-headed self-attention

Feed-forward layers

Layer norm and residuals

Add & Norm

t

Linear

Multi-Head Attention

Nx Add & Norm | Concat
Multi-Head
Attention L
— [Scaled Dot-Product
Attention
k_ J/ r‘-‘[t‘_>[t‘_J
(POS'“O' \8| -*9 N Linear Linear Linear
Encoding ¥ ¥ ¥
Input
Embedding
\ V K Q

Inputs

Embedding and Positional Encoding fusion

v

EmbedLayerNormalization

A4

-
Add & Norm
eel

v

Multi-headed self-attention Fusion

!

(—— - — Attention

Add & Norm \ I]

Feed
Forward

|

Nx Add & Norm ~
Self-Attention Layer

g i —
Multl-Hgad (Before optimizations)
Attention
-~
Element
a

- —
) N
Positional Input
Encoding % @Bx3x.McH) Attegtl:(t):ulgayer
Input
Embedding
T \ 3 separate FC layers y/‘

Inputs

Gelu Fusion

GELU(z) := 2P(X < z) = 2®(z) = 0.5z (1 +erf (%))

v
)
.
c

Add & Norm
=

Feed
Forward

Add & Norm

L
. \ 4
& Y

Skip Layer Normalization Fusion

l

!

—> SkipLayerNormalization

BER
Opti

" Graph

mizations

e Basic Level

e Constant Folding
e Reshape Fusion

== Extended Level

e GELU Fusion

e Layer Normalization Fusion

e BERT Embedding Layer Fusion

e Attention Fusion

e Skip Layer Normalization Fusion
e Bias GELU Fusion

e Fast GELU Fusion

3%,
- —
=
T = = batch_sizexmax_seq_len batch_size xmax_seq_len batch_sizexmax_seq_len
E Cast Cast
= = l EmbedLayerNormalization
—— - Attention
=_= ;
= - 2
= - MatMul
= =
:— SkipLayerNormalization
- ==
=
- » MatMul
After graph E
o g o = ‘__ MatMul
= —
I I I I I L SkipLayerNormalization
— —
e P S
- - - - i
= = = &= = Attention
——— o -
= = MatMul
= 3
= = SkipLayerNormalization
—
E MatMul
= FastGelu
== MatMul
'? SkipLayerNormalization
“~—e |

4
N\

BERT optimization in ONNX Runtime

ONNX Model . . .
‘ o - Graph optimization
ONNX RUNTIME

Intermediate Representation (IR) . . .
e . Hardware-based kernel optimization

Inputs Results - Take full advantage of the GPU architecture

Executor (SequentialExecutor/ParallelExecutor) ‘

Execution Providers

- Increase the parallelization and fully leverage available
CpuEP CudaEP TensorRTEP nGraphEP D
CPU cores

- Leverage GEMM to further reduce the computation cost

Optimized CPU and CUDA kernels in ONNX

Runtime

Inference

In self-attention layer CPU implementation

BERT With ONNX
Runtime

BERT-SQUAD with 128
sequence length and batch size
1 on Azure Standard NC6S_v3
(GPU V100)

* in 1.7 ms for 12-layer fp16
BERT-SQUAD.

* in 4.0 ms for 24-layer fp16
BERT-SQUAD.

CPU

GPU

Bing’s 3-layer BERT with 128 sequence length

Throughput Latency

Batch size il ST (Query per second) (milliseconds)

Original 3-layer BERT 1 Azure Standard F16s_v2 (CPU) 6 157

Azure Standard F16s_v2 (CPU)

with ONNX Runtime 1 3

ONNX Model 1

Original 3-layer BERT o Azure NV6 GPU VM 200 20

Azure NV6 GPU VM

Ll e A with ONNX Runtime =t -

Azure NC65_v3 GPU VM
ONNX Model 64 with ONNX Runtime + System Optimization 10667 e
(Tensor Core with mixed precision, Same Accuracy)

On NVIDIA V100 GPUs we saw ~10,000 queries per
second throughput

Development time for new BERT scenarios was cut
from multiple days to a few hours

ONNX Runtime powered BERT inference in office

Key points In Word

“At a glance” in In
OneDrive and Sharepoint

Keypoints model

3-layer BERT

The P50 latency reduced by 3x over
the original traditional

ML based solution

The development cost was

significantly reduced

ONNX Runtime to power BERT inference

Bing Ranking Key Point in Office Bing Ads
3-layer BERT 3-layer BERT 3-layer BERT
Hugging Face Text Analytics in Azure Al Bing Feeds
12-layer BERT 12-layer BERT 12-layer BERT
Speech & Language in Azure Cognitive service Questions suggestionsinBing ...

2-layer BERT 24-layer BERT

Model operationalization with ONNX

Train models with various Convert into ONNX with HW accelerated inference with

frameworks or services ONNX Converters ONNX Runtime

Frameworks Azure

Azure Machine Learning service

O PyTorch @ learn 2 Caffe? f]

Ubuntu VM
S 4\ MathWorks 4 pecdepace

Windows Server 2019 VM

Yegoost @) @xnet I cnaner ——— ONNX Model

Devices

Services L, Edge Cloud & Appliances

& Azure Custom Vision Service

& Auto Machine Learning Service o Edge & loT Devices

Demo

PyTorch BERT acceleration

with ONNX Runtime

1. Load Pretrained Bert model

We begin by downloading the SQuAD data file and store them in the specified location.

import os

cache_dir = "./squad”
if not os.path.exists(cache_dir):
os.makedirs(cache_dir)

predict_file url = "https://rajpurkar.github.io/
predict_file = os.path.join(cache_dir, "dev-v1.1
if not os.path.exists(predict_file):
import wget
print(“”Start downloading predict file.™)
wget.download(predict_file url, predict_file
print("Predict file downloaded.")

Specify some model configuration variables and constant.

For fine tuned Large model, the model name is
ere we use bert-base for demo.
model_name_or_path = "bert-base-cased”
max_seq_length = 128

doc_stride = 128

max_query_length = 64

Enable overwrite to export onnx model and dowr
enable_overwrite = True

Total samples to inference. It shall be Large
total_samples = 180

Start to load model from pretrained. This step could take a f

The following code is adapted from HuggingFace
https://qgithub. com/huggingface/transformers/bl

from transformers import (BertConfig, BertForQue

Load pretrained model and tokenizer
config_class, model_class, tokenizer class = (Be
config = config_class.from_pretrained(model_name
tokenizer = tokenizer class.from_pretrained(mode
model = model_class.from_pretrained(model_name_c
from_tf=Fals
config=confi
cache_dir=ce
Load some examples
from transformers.data.processors.squad import ¢

processor = SquadV1Processor()
examples = processor.get_dev_examples(None, file

from transformers import squad_convert_sexamples_

features, dataset = squad_convert_examples_to_fe
examples=examples[:total_samples], #
tokenizer=tokenizer,
max_seq_length=max_seq_length,
doc_stride=doc_stride,
max_query_length=max_query_length,
is_training=False,
return_dataset="pt’

Model exported at

2. Export the loaded moc

Once the model is loaded, we can export

output_dir = "./onnx"

if not os.path.exists(output_dir) *

os.makedirs(output_dir)
export_model_path = os.path.join(

import torch
device = torch.device("cpu™)

Get the first example data to r
data = dataset[a]
inputs = {
"input_ids': data[@].to(
‘attention_mask': data[1].to(
"token_type_ids': data[2].to(
¥

Set model to inference mode, wh

differently in

inference and training mode.
model.eval()

model . to{device)

if enable_overwrite or not os.pat
with terch.no_grad():
symbolic_names = {8: 'bat
torch.onnx.export(model,

args=tu
multiple inputs)

f=expor
be a file or file-Like object)

opset_wv
he model to

do_cons
folding for optimization

input_n

output_

dynamic

print("Model exported at

. fonnx\bert-ba:

4. Inference ONNX Model with ONNX Runtime

OpenMP Environment Variable

OpenlP environment variables are very important for CPU inference of Bert model. It has large performance impact on Bert model
so you might need set it carefully according to Performance Test Tool result in later part of this notebook

Setting environment variables shall be done before importing onnxruntime. Otherwise, they might not take effect.

import psutil

You may change the settings in this cell according to Performance Test Tool result.
use_openmp = False

ATTENTION: these environment variables must be set before importing onmxruntime.
if use_openmp:

os.environ["OMP_NUM_THREADS"] = str(psutil.cpu_count(logical=True))
else:

os.enviren["OMP_NUM_THREADS"] = '1°

os.environ["OMP_WALT_POLICY"] = 'ACTIVE'

Now we are ready to inference the model with ONNX Runtime. Here we can see that OnnxRuntime has befter performance than
PyTorch.

Itis better to use standalone python script like Performance Test tool to get accurate performance results.

import onnxruntime
import numpy

Print warning if user uses onnxruntime-gpu instead of onnxruntime package.
if 'cuDAExecutionProvider’ in onnxruntime.get available providers():

print(“warning: onnxruntime-gpu is not built with OpenMP. You might try onnxruntime package to test CP
U inference.™)

sess_options = onnxruntime.SessionOptions()

Optional: store the optimized graph and view it using Netron to verify that model is fully optimized.
Note that this will increase session creation time, so it is for debugging only.
sess_options.optimized model filepath = os.path.join(output_dir, “"optimized model cpu.onnx™)

if use openmp:
sess_options.intra_op num_threads=1

else:
sess_options.intra_op_num_threads=psutil.cpu_count(logical=True)

Specify providers when you use onnxruntime-gpu for CPU inference.
session = onnxruntime.InferenceSession(export_model path, sess_options, providers=[°CPUExecutionProvide

r1)

latency = []
for i in range(total_samples):
data = dataset[i]
Use contiguous array as input might improve performance.
You can check the results from performance test tool to see whether you need it.
ort_inputs = {
‘input_ids': numpy.ascontiguousarray(data[e].cpu().reshape(1, max_seq length).numpy()),
"input_mask’: numpy.ascontiguousarray(data[1].cpu().reshape(1, max_seq length).numpy()),
‘segment_ids': numpy.ascontiguousarray(data[2].cpu().reshape(1, max_seq_ length).numpy())

start = time.time()
ort_outputs = session.run{None, ort_inputs)
latency.append(time.time() - start)
print("OnnxRuntime cpu Inference time = {} ms".format(format(sum(latency) * 188@ / len(latency), '.2f')))

http://aka.ms/pytorchbertwithort

ONNX Runtime Adoption

SQL Server ORACLE
®
q Lo

PowerApps

m

Power BI A):lOMA

U p to 18)(performance gains seen by Microsoft services

1 0 + platforms integrated with ONNX Runtime

[) []
IVI I I I IO n S of devices running ONNX Runtime
[] [
BI I I IO n S of requests handled in prod

Visual Studio
Code

G Ofﬂce 365 Cognitive Serwces . MarkLOglc

md |»Bing oS
L]
Deep Learning Inference Service (DLIS)

Windows Azure Kinect DK

naV|ta|re

company

Thanks

ONNX ONNX Runtime BERT acceleration in ONNX Runtime

https://github.com/onnx/onnx
https://github.com/microsoft/onnxruntime
https://cloudblogs.microsoft.com/opensource/2020/01/21/microsoft-onnx-open-source-optimizations-transformer-inference-gpu-cpu/

