%% ONNX Runtime

Breakthrough optimizations
for transformer inference on GPU and CPU

Emma Ning| Senior product manager, Microsoft



L

BEFORE

what can aggravate a concussion

All Irmages

POfiFacts About Concussion and Brain Injury

hitps.//'www.cdeo.govheadsup/ pdfs/providers/fac
yd Concussions ca

rapidly back and forth |

ur

from a fall or a blow to the body that ca

i5_about_concussion_thi-a pdf

uses the head to

[ g

1

s

ove

b

what can aggravate a concussion

All

Images

AFTER

Suspect a Concussion? How to Help (Not Hurt) Your Recovery ...
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Using cutting-edge NLP techniques like transformers

Bing Search Engine

to better understand user queries, webpages, and other documents




Transformer for natural language processing

e Transformers - breakthrough in natural language understanding

* BERT - Bidirectional Encoder Representations from Transformers
* Architecture (L: layers (transformer block), H:hidden size, A: self-attention head)
 BERT base: L=12, H=768, A=12, Parameters=110M
 BERT large: L=24, H=1024, A=16, Parameters=340M

* Running a 12- or 24-layer BERT for every query real-time is prohibitively

expensive



BERT optimizations in Bing

Finetuned BERT-Base,
a 12-layermodel

e Significantly improves
Precision and Coverage

)

Leveraged knowledge
distillation to create a

3-layered BERT

accuracy

¢ Reduced inference cost
significantly

serving latency on CPU

\_

* No any significant loss in

o Still benchmarked at 77ms

)

Re-implemented the
model using TensorRT
C++ APIs

* Take full advantage of
NVIDIA GPU architecture

® 800x throughput
improvement on GPU

\_

Problem - Reimplement the model was time-consuming



Transformer inference acceleration
with ONNX Runtime



BERT Optimization Opportunity

e Model

* Too many elementary operators

 Multi transformer cells

e Kernels in ONNX Runtime

* Not fully utilize hardware characteristic
* CPU cores

* Tensor-Core
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BERT optimization in ONNX Runtime

ONNX Model
ONNX RUNTIME ‘

Intermediate Representation (IR)

Graph Optimization (in general)
Graph Partitioning

User Graph Optimization (per Execution Provider) Inference
Results

Executor (SequentialExecutor/ParallelExecutor) ‘

Execution Providers

=)

CpuEP CudaEP TensorRTEP nGraphEP D

Graph optimization

Hardware-based kernel optimization



ONNX Runtime — Graph Optimization

' -GraphTransfurmer A ' -GraphTransfurmerManager A G ra p hTra nSfO rm e r
Clazs Class
r r * An interface created for finding patterns (with specific
b Fields 4 Fields . A .
i O, levelto transformer map.. nodes) and applying rewriting rules against a sub-graph.
@ Applylmpl « Methods * An interface created for applying graph transformation
@ GetCompatibleExecutionProviders @ ApplyTransformers . . ore
@ Name © Register with full graph editing capability.
Fi b Mested Types
public
| RuleBasedGraphTransformer A | | RewriteRule A | Graph Optimization Level
Clazs Class
-t GraphTransformer i . . .
| 7 . Basic: General transformers not specific to any specific
+ elds 4 Methods execution provider (e.g. drop out elimination)
®_ rules_ B — ©. Aool
a APRY . . o pe
¢ Methods ® Name Extended: Execution provider specific transformers
gﬂ Applylmpl @, SatisfyCondition
+ ApplyRulesOnNode > Nested Types Layout Optimizations: change the data layout for
@ Register

applicable nodes (NCHW layout to NHWC layout)



BERT Encoder Block

Positional embeddings

Multi-headed self-attention

Feed-forward layers

Layer norm and residuals
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Embedding and Positional Encoding fusion
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Multi-headed self-attention Fusion
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Gelu Fusion

GELU(z) := 2P(X < z) = 2®(z) = 0.5z (1 +erf (%))
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Skip Layer Normalization Fusion
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BER
Opti

" Graph

mizations

e Basic Level

e Constant Folding
e Reshape Fusion

== Extended Level

e GELU Fusion

e Layer Normalization Fusion

e BERT Embedding Layer Fusion

e Attention Fusion

e Skip Layer Normalization Fusion
e Bias GELU Fusion

e Fast GELU Fusion
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BERT optimization in ONNX Runtime

ONNX Model . . .
‘ o - Graph optimization
ONNX RUNTIME

Intermediate Representation (IR) . . .
e . Hardware-based kernel optimization

Inputs Results - Take full advantage of the GPU architecture

# Executor (SequentialExecutor/ParallelExecutor) ‘

Execution Providers

- Increase the parallelization and fully leverage available
CpuEP CudaEP TensorRTEP nGraphEP D
CPU cores

- Leverage GEMM to further reduce the computation cost

Optimized CPU and CUDA kernels in ONNX

Runtime

Inference

In self-attention layer CPU implementation




BERT With ONNX
Runtime

BERT-SQUAD with 128
sequence length and batch size
1 on Azure Standard NC6S_v3
(GPU V100)

* in 1.7 ms for 12-layer fp16
BERT-SQUAD.

* in 4.0 ms for 24-layer fp16
BERT-SQUAD.

CPU

GPU

Bing’s 3-layer BERT with 128 sequence length

Throughput Latency

Batch size il ST (Query per second) (milliseconds)

Original 3-layer BERT 1 Azure Standard F16s_v2 (CPU) 6 157

Azure Standard F16s_v2 (CPU)

with ONNX Runtime 1 3

ONNX Model 1

Original 3-layer BERT o Azure NV6 GPU VM 200 20

Azure NV6 GPU VM

Ll e A with ONNX Runtime =t -

Azure NC65_v3 GPU VM
ONNX Model 64 with ONNX Runtime + System Optimization 10667 e
(Tensor Core with mixed precision, Same Accuracy)

On NVIDIA V100 GPUs we saw ~10,000 queries per
second throughput

Development time for new BERT scenarios was cut
from multiple days to a few hours



ONNX Runtime powered BERT inference in office

Key points In Word

“At a glance” in In
OneDrive and Sharepoint

Keypoints model

3-layer BERT

The P50 latency reduced by 3x over
the original traditional

ML based solution

The development cost was

significantly reduced



ONNX Runtime to power BERT inference

Bing Ranking Key Point in Office Bing Ads
3-layer BERT 3-layer BERT 3-layer BERT
Hugging Face Text Analytics in Azure Al Bing Feeds
12-layer BERT 12-layer BERT 12-layer BERT
Speech & Language in Azure Cognitive service Questions suggestionsinBing ...

2-layer BERT 24-layer BERT



Model operationalization with ONNX

Train models with various Convert into ONNX with HW accelerated inference with

frameworks or services ONNX Converters ONNX Runtime

Frameworks Azure

Azure Machine Learning service

O PyTorch @ learn 2 Caffe? f ]

Ubuntu VM
S 4\ MathWorks 4 pecdepace

Windows Server 2019 VM

Yegoost @) @xnet I cnaner ——— ONNX Model

Devices

Services L, Edge Cloud & Appliances

&  Azure Custom Vision Service

& Auto Machine Learning Service o Edge & loT Devices



Demo

PyTorch BERT acceleration

with ONNX Runtime

1. Load Pretrained Bert model

We begin by downloading the SQuAD data file and store them in the specified location.

import os

cache_dir = "./squad”
if not os.path.exists(cache_dir):
os.makedirs(cache_dir)

predict_file url = "https://rajpurkar.github.io/
predict_file = os.path.join(cache_dir, "dev-v1.1
if not os.path.exists(predict_file):
import wget
print(“”Start downloading predict file.™)
wget.download(predict_file url, predict_file
print("Predict file downloaded.")

Specify some model configuration variables and constant.

# For fine tuned Large model, the model name is
ere we use bert-base for demo.
model_name_or_path = "bert-base-cased”
max_seq_length = 128

doc_stride = 128

max_query_length = 64

# Enable overwrite to export onnx model and dowr
enable_overwrite = True

# Total samples to inference. It shall be Large
total_samples = 180

Start to load model from pretrained. This step could take a f

# The following code is adapted from HuggingFace
# https://qgithub. com/huggingface/transformers/bl

from transformers import (BertConfig, BertForQue

# Load pretrained model and tokenizer
config_class, model_class, tokenizer class = (Be
config = config_class.from_pretrained(model_name
tokenizer = tokenizer class.from_pretrained(mode
model = model_class.from_pretrained(model_name_c
from_tf=Fals
config=confi
cache_dir=ce
# Load some examples
from transformers.data.processors.squad import ¢

processor = SquadV1Processor()
examples = processor.get_dev_examples(None, file

from transformers import squad_convert_sexamples_

features, dataset = squad_convert_examples_to_fe
examples=examples[:total_samples], #
tokenizer=tokenizer,
max_seq_length=max_seq_length,
doc_stride=doc_stride,
max_query_length=max_query_length,
is_training=False,
return_dataset="pt’

Model exported at

2. Export the loaded moc

Once the model is loaded, we can export

output_dir = "./onnx"

if not os.path.exists(output_dir) *

os.makedirs(output_dir)
export_model_path = os.path.join(

import torch
device = torch.device("cpu™)

# Get the first example data to r
data = dataset[a]
inputs = {
"input_ids': data[@].to(
‘attention_mask': data[1].to(
"token_type_ids': data[2].to(
¥

# Set model to inference mode, wh

differently in

# inference and training mode.
model.eval()

model . to{device)

if enable_overwrite or not os.pat
with terch.no_grad():
symbolic_names = {8: 'bat
torch.onnx.export(model,

args=tu
multiple inputs)

f=expor
be a file or file-Like object)

opset_wv
he model to

do_cons
folding for optimization

input_n

output_

dynamic

print("Model exported at

. fonnx\bert-ba:

4. Inference ONNX Model with ONNX Runtime

OpenMP Environment Variable

OpenlP environment variables are very important for CPU inference of Bert model. It has large performance impact on Bert model
so you might need set it carefully according to Performance Test Tool result in later part of this notebook

Setting environment variables shall be done before importing onnxruntime. Otherwise, they might not take effect.

import psutil

# You may change the settings in this cell according to Performance Test Tool result.
use_openmp = False

# ATTENTION: these environment variables must be set before importing onmxruntime.
if use_openmp:

os.environ["OMP_NUM_THREADS"] = str(psutil.cpu_count(logical=True))
else:

os.enviren["OMP_NUM_THREADS"] = '1°

os.environ[ "OMP_WALT_POLICY"] = 'ACTIVE'

Now we are ready to inference the model with ONNX Runtime. Here we can see that OnnxRuntime has befter performance than
PyTorch.

Itis better to use standalone python script like Performance Test tool to get accurate performance results.

import onnxruntime
import numpy

# Print warning if user uses onnxruntime-gpu instead of onnxruntime package.
if 'cuDAExecutionProvider’ in onnxruntime.get available providers():

print(“warning: onnxruntime-gpu is not built with OpenMP. You might try onnxruntime package to test CP
U inference.™)

sess_options = onnxruntime.SessionOptions()

# Optional: store the optimized graph and view it using Netron to verify that model is fully optimized.
# Note that this will increase session creation time, so it is for debugging only.
sess_options.optimized model filepath = os.path.join(output_dir, “"optimized model cpu.onnx™)

if use openmp:
sess_options.intra_op num_threads=1

else:
sess_options.intra_op_num_threads=psutil.cpu_count(logical=True)

# Specify providers when you use onnxruntime-gpu for CPU inference.
session = onnxruntime.InferenceSession(export_model path, sess_options, providers=[°CPUExecutionProvide

r1)

latency = []
for i in range(total_samples):
data = dataset[i]
# Use contiguous array as input might improve performance.
# You can check the results from performance test tool to see whether you need it.
ort_inputs = {
‘input_ids': numpy.ascontiguousarray(data[e].cpu().reshape(1, max_seq length).numpy()),
"input_mask’: numpy.ascontiguousarray(data[1].cpu().reshape(1, max_seq length).numpy()),
‘segment_ids': numpy.ascontiguousarray(data[2].cpu().reshape(1, max_seq_ length).numpy())

start = time.time()
ort_outputs = session.run{None, ort_inputs)
latency.append(time.time() - start)
print("OnnxRuntime cpu Inference time = {} ms".format(format(sum(latency) * 188@ / len(latency), '.2f')))


http://aka.ms/pytorchbertwithort
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Thanks

ONNX ONNX Runtime BERT acceleration in ONNX Runtime



https://github.com/onnx/onnx
https://github.com/microsoft/onnxruntime
https://cloudblogs.microsoft.com/opensource/2020/01/21/microsoft-onnx-open-source-optimizations-transformer-inference-gpu-cpu/

