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m Wide variety of textual content.
m Document clustering models are necessary.
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Co-clustering

= ltis an important extension of traditional one-sided clustering, that addresses the problem of
simultaneous clustering of both dimensions of data matrices.

Govaert & Nadif (2013). Co-clustering: models, algorithms and applications. John Wiley & Sons.
6/21



Co-clustering
oe

Co-clustering

Co-clustering

= ltis an important extension of traditional one-sided clustering, that addresses the problem of
simultaneous clustering of both dimensions of data matrices.

—uotvornoo TN

EEEEEEEEEEEE

BEIBIEIIEE T
Doci[01T 0010001001
Doc2(1 00101110110
Doc3f1 01101111110
Doc4(100000110010
Doc5(110000110010
Doc6(1 10000001001
Doc7(101101110110
Doc8(0 10010001001
Doc9(1 00000110010

(a) Original Data

Govaert & Nadif (2013). Co-clustering: models, algorithms and applications. John Wiley & Sons.
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(b) Clustering

(a) Original Data

Govaert & Nadif (2013). Co-clustering: models, algorithms and applications. John Wiley & Sons.

6/21



Co-clustering

)
c
=
)
o
o
=
Q
o
(@)

Co-clustering

= ltis an important extension of traditional one-sided clustering, that addresses the problem of

simultaneous clustering of both dimensions of data matrices.

g wisL
| wisL
JATIET
1L wie)
[-RTTICTR
6 WisL
2 wisl
2l wie)
9 sl
€ Wisl
0l wisy
FAICTR

21 wisL
1L wiaL
0L wial
6 WisL
g Wisl
JAICTR
9 sl
G wisl
PACTR
[XICTR
2 wisl
| wisL

21wl
[RRTICT)
01 wial
6 WisL
g Wwisl
JAICTR
9 wisl
G wisl
PAUCTR
[AICTR
2 wisl
| wisL

-—+—looo~+—
oo~
--rlococo~
--rlococor~—

coco~-orfoo
or-orrrloo
coco+~r-r—loo
coco~-r-r—loo

~r-r—loooloo
~r-oloooloo
~r-r—loocoloo
~r-r—loocoloo

(b) Clustering (c) Co-clustering

(a) Original Data

Govaert & Nadif (2013). Co-clustering: models, algorithms and applications. John Wiley & Sons.
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Why Co-clustering?
= Exploit the duality between object space and attribute space
m Cluster Characterization
= Technique for dimensionality reduction
= Reduce Computation time

Govaert & Nadif (2013). Co-clustering: models, algorithms and applications. John Wiley & Sons.
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= Solve the following optimization problem:

1
F= §||szsz||2, st Z>0, W>0,S>0. 1)
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= One important aspect when dealing with text data, is to preserve the semantic
relationships between words.

Melissa Ailem, Aghiles Salah and Mohamed Nadif (AAAI 2018). Word Co-occurrence Regularized Non-negative
Matrix Tri-Factorization for Text Data Co-clustering.
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Melissa Ailem, Aghiles Salah and Mohamed Nadif (AAAI 2018). Word Co-occurrence Regularized Non-negative
Matrix Tri-Factorization for Text Data Co-clustering.
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Melissa Ailem, Aghiles Salah and Mohamed Nadif (AAAI 2018). Word Co-occurrence Regularized Non-negative
Matrix Tri-Factorization for Text Data Co-clustering.
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m Previous co-clustering methods, including NMTF, have overlooked this aspect.
= This may induce a significant loss of semantics.

m We propose a new NMTF model that leverage word embeddings so as to preserve
more semantics (Ailem et al., 2017; Salah et al., 2017; Ailem et al., 2018).

Melissa Ailem, Aghiles Salah and Mohamed Nadif (AAAI 2018). Word Co-occurrence Regularized Non-negative
Matrix Tri-Factorization for Text Data Co-clustering.
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SKIP-GRAM with Negative Sampling (SGNS)

N
Z Ywelwe |log O'(VIew) + Z log a(—vz(ew) . 2)

w,c i=1
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Semantic NMTF (SNMTF)

Levy and Goldberg (2014) showed that SGNS is implicitly factorizing a word-context
matrix, whose cells are the pointwise mutual information (PMI) shifted by log(N)

p(Wj, wj’ )

PMI(wj, ws) = log
I P(Wj)P(Wj’)

®)

Melissa Ailem, Aghiles Salah and Mohamed Nadif (AAAI 2018). Word Co-occurrence Regularized Non-negative
Matrix Tri-Factorization for Text Data Co-clustering.
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Semantic NMTF (SNMTF)

Levy and Goldberg (2014) showed that SGNS is implicitly factorizing a word-context
matrix, whose cells are the pointwise mutual information (PMI) shifted by log(N)

p(wj, wir)

—_— 3
p(wj)p(wy) ©

PM'(W]', Wj/) = log

m Objective : Regularize NMTF with Word embeddings

Melissa Ailem, Aghiles Salah and Mohamed Nadif (AAAI 2018). Word Co-occurrence Regularized Non-negative
Matrix Tri-Factorization for Text Data Co-clustering.
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Melissa Ailem, Aghiles Salah and Mohamed Nadif (AAAI 2018). Word Co-occurrence Regularized Non-negative
Matrix Tri-Factorization for Text Data Co-clustering.
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m The objective function of our model, SNMTF, is given by

1 A
F(Z,W.$,Q) = J[X —ZSW'|[+ Z|IM - WQ |,

NMTF Regularization term

4)
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1
F(Z,W,5,Q) = J Tr (XXT A ZSWTWSTZT)

+ % Tr (MMT —OMQWT + WQTQWT). (5)

16/21



Semantic NMTF (SNMTF)
[e]e]e] )

Inference

F(Z,W,S,Q) = ~ Tt (XXT —2xws'zT + ZSWTWSTZT)

D> -

+ 2T (MMT —2MQWT + WQTQWT). (5)

m Enforce positivity constraints by introducing the Lagrange multipliers ., 3, i and ~ :

L(Z,W,8,Q,c,B,p1,7) = F(Z,W,8,Q) + Tr (aZ™) + Tr (BW ') + Tr (uST) + Tr (vQ ).
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Tr (XXT —oxwsTzT + stTwstT)

Tr (MMT —OMQWT + WQTQWT). (5)

m Enforce positivity constraints by introducing the Lagrange multipliers o, 3, p» and ~ :

L(Z,W,S,Q, 0, B, ,v) = F(Z,W,$,Q) + Tr (aZ" ) + Tr (BW' ) + Tr (uST) + Tr (vQ ).

m Making use of the KKT conditions and solving resulting stationary equations, yields

the following update rules

XWS T 7T XW
Z+70———— (72 SO ———— 7
Lo ZSWTWST (7a) $<80 ZTZSWTW (7c)
(XTZS + \MQ) MTW
W W 7b . 7d
“WOwszZTIsT g (P Q= QO GwTw (7d)
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Document Clustering

= Average NMI and ARl over different datasets.

Data Metrics NMTF SNMTF
NMI 0.40+0.02 | 0.63+0.01
ARI 0.23+0.02 | 0.47+-0.02
NMI 0.59+0.02 | 0.67+0.03
ARI 0.43+0.03 | 0.53+0.05
NMI 0.4240.02 | 0.53+0.03
ARI 0.35+0.04 | 0.50+-0.06

NG20

TREC

LA Times

Melissa Ailem, Aghiles Salah and Mohamed Nadif (AAAI 2018). Word Co-occurrence Regularized Non-negative
Matrix Tri-Factorization for Text Data Co-clustering.
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Word Clustering

m Distribution of pairwise cosine similarities between the top 30 words characterizing
each document class, computed using the word factors obtained by NMTF and

SNMTF
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Melissa Ailem, Aghiles Salah and Mohamed Nadif (AAAI 2018). Word Co-occurrence Regularized Non-negative
Matrix Tri-Factorization for Text Data Co-clustering.
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Conclusion

m We propose SNMTF, a new co-clustering model that leverage word embeddings in
NMTF, thus allowing to preserve the semantic relationships between words.

= SNMTF successfully preserves more semantics, which allows it to noticeably
improve the performance of NMTF models in terms of co-clustering.
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Conclusion

m We propose SNMTF, a new co-clustering model that leverage word embeddings in
NMTF, thus allowing to preserve the semantic relationships between words.

m SNMTF successfully preserves more semantics, which allows it to noticeably
improve the performance of NMTF models in terms of co-clustering.

Perspectives

m Extend the idea of of leveraging the word co-occurrences to capture the semantic
relationships between words to other co-clustering models, including the different
variants of NMTF.

= Investigate other type of contexts in which words co-occur, e.g., sentences.
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