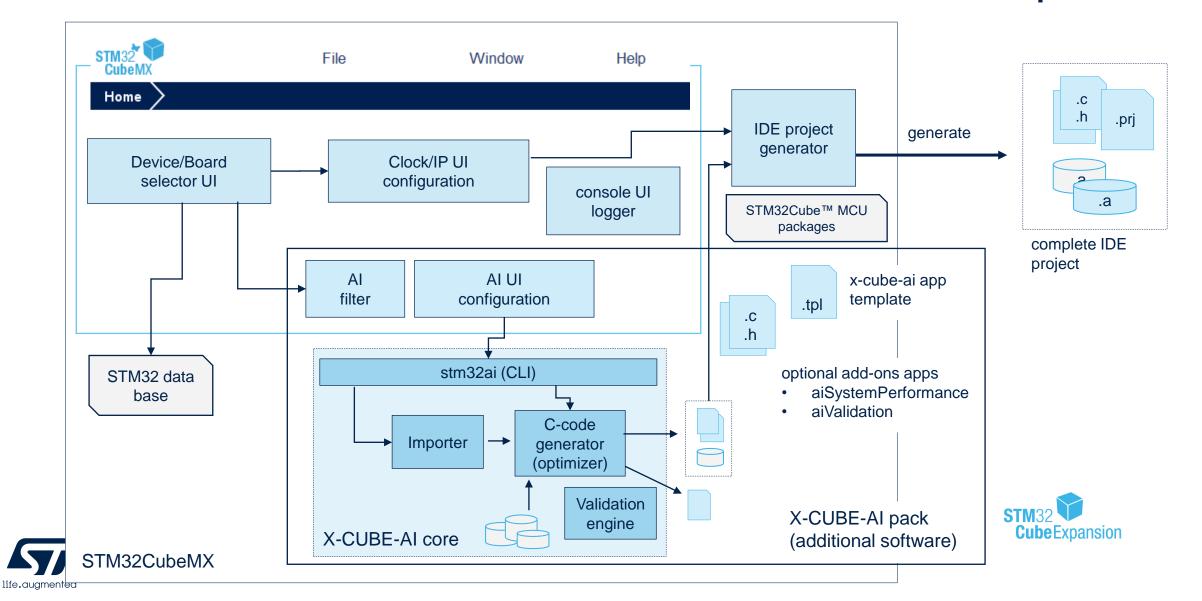
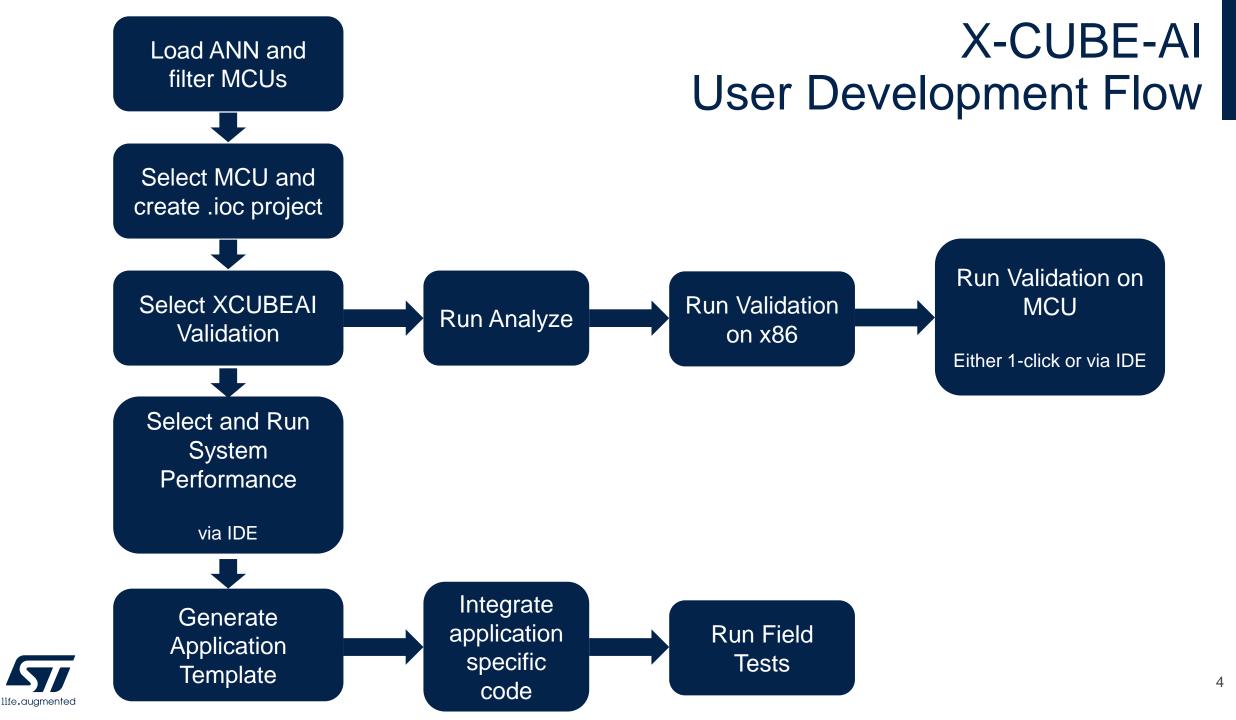





### Flows and Tools to map ONNX Neural Networks on Micro-controllers


#### Oct 14<sup>th</sup> 2020


Danilo Pau Technical Director, IEEE & ST Fellow System Research and Applications STMicroelectronics, Agrate Brianza



life.augmented

### X-CUBE-AI package as STM32CubeMX cube expansion





# Case Study: ESC-50 (Environmental Sound Classification)

- Dataset
  - 50 classes
  - 40 audio files, 5 sec per class
  - Sampling frequency of recordings: 44.1 KHz
  - Available @ <u>https://github.com/karolpiczak/ESC-50</u>
- Pre processing
  - For each recording, time-frequency spectrogram using 2048 samples windows and 512 samples stride size
  - Transformation of the frequency scale into Mel scale using 128 mel-features
  - Division of the spectrogram into 220ms intervals (128x16 matrix)
  - Ignore low energy spectra whose Frobenius norm is less than 1e-4
  - Normalization respect to maximum energy



# Case Study: ESC-50 (Environmental Sound Classification)

#### ConvNet (Pytorch 1.6.0+cu101)



MX STM32CubeMX Untitled\*: STM32H743ZITx NUCLEO-H743ZI2

| STM32 CubeMX                                                                                | File<br>H743ZITx - NUCLE                                                         | Window                                                                                                                           | n                                 | _                    | E-AI 5                                                                                                                      | _                                                                   |                                  | 0710                                     | 4005     | AL 17                      |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------|------------------------------------------|----------|----------------------------|
|                                                                                             | & Configuration                                                                  |                                                                                                                                  | ditional Softw                    | act                  | <b>EO-STI</b><br>(total) : 135,62                                                                                           | WI32<br>14 B (132.45 Kie                                            | 97                               | •                                        | , 4801   | //HZ                       |
| Categories A->Z System Core                                                                 | ✓                                                                                |                                                                                                                                  | DBE-AI.5.2.0 Mod<br>Configuration |                      | layer (type)<br>inputl (Input)                                                                                              | (128, 8, 1)                                                         | param #                          | connected to                             | macc     | rom                        |
| Analog<br>Timers                                                                            | <u> </u>                                                                         | form Settings tinycnn                                                                                                            | +                                 |                      | node_13 (Conv2D)                                                                                                            |                                                                     | 320                              | inputl<br>node 13                        | 241,952  | 1,280                      |
| Connectivity<br>Multimedia<br>Security<br>Computing                                         | params #<br>macc<br>weights (<br>activatio<br>ram (tota                          | ns (rw)                                                                                                                          | : 9,202,<br>: 601,48<br>: 131,32  | 672<br>0 B<br>8 B    | tems (587.<br>(587.38 K<br>(128.25 K<br>(132.45 K                                                                           | iB)<br>iB)                                                          |                                  | 28 + 4 0                                 | 96 + 200 | 3,024<br><br><br>2,896<br> |
| Middleware<br>Trace and Debug<br>Power and Therma<br>Additional Software<br>STMicroelectron | → Validation<br>Validation<br>Validation<br>Complexity<br>Flash occu<br>RAM: 132 | inputs: Random numb<br>outputs: None ~<br>(: 9202672 MACC<br>(pation: 587.38 KiB (2.<br>.45 KiB (512.00 KiB pr<br>compression: - | oers ∽<br>00 MiB present)         | 7<br><br>9<br><br>10 | <pre>node_21 (Conv2D)<br/>node_22 (Nonlinearity)<br/>node_24 (Pool)<br/>node_25 (Reshape)<br/>fclweight (Placeholder)</pre> | (122, 2, 16)<br>(122, 2, 16)<br>(61, 1, 16)<br>(976,)<br>(128, 976) | 2,064<br>2,064<br>124,928<br>128 | node_20<br>node_21<br>node_22<br>node_24 | 507,536  | 8,256                      |
|                                                                                             | Analysis st                                                                      | tatus: done<br>on status Acc RMSE                                                                                                | MAE                               |                      | fclbias (Placeholder)<br>node_26 (Gemm)                                                                                     | (128,)<br>(1, 128)                                                  | 128                              | node_25<br>fclweight<br>fclbias          | 124,928  |                            |



MX STM32CubeMX onnx stm32h7 validation.ioc\*: STM32H743ZITx NUCLEO-H743ZI2

# **X-CUBE-AI 5.2.0** )-STM32H743ZI2, 480MHZ 🎽

jer

Pinout view

| Q        |
|----------|
| Catego   |
| Syster   |
| Analog   |
| Timers   |
| Conne    |
| Multim   |
| Securi   |
| Comp     |
| Middle   |
| Trace    |
| Power    |
| Additic  |
| ST       |
|          |
| MCUs (   |
| [AI:tin] |
| [AI:tin] |

STM32 CubeMX

Home

MX Please wait...

| /alida                                          | ation                                        | on target                                                                                                                                          |                                                                                            |         | IN      | UC        |      |            | -3    |      |
|-------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------|---------|-----------|------|------------|-------|------|
| )                                               | 0                                            | 10004/(2D Convolutional)                                                                                                                           | (126, 6, 32)                                                                               | float32 | 7.635   | 7.0%      |      |            |       |      |
| L                                               | 2                                            | 10011/(Merged Conv2d / Pool)                                                                                                                       | (124, 4, 64)                                                                               | float32 | 61.183  | 55.8%     |      |            |       |      |
| 2                                               | 5                                            | 10004/(2D Convolutional)                                                                                                                           | (123, 3, 32)                                                                               | float32 | 33.156  | 30.2%     |      |            |       |      |
| 3                                               | 7                                            | 10011/(Merged Conv2d / Pool)                                                                                                                       | (61, 1, 16)                                                                                | float32 | 5.482   | 5.0%      |      |            |       |      |
| 4                                               | 11                                           | 10020/(GEMM)                                                                                                                                       | (1, 1, 128)                                                                                | float32 | 2.095   | 1.9%      |      |            |       |      |
| 5                                               | 12                                           | 10009/(Nonlinearity)                                                                                                                               | (1, 1, 128)                                                                                | float32 | 0.002   | 0.0%      |      |            |       |      |
| 5                                               | 13                                           | 10020/(GEMM)                                                                                                                                       | (1, 1, 50)                                                                                 | float32 | 0.108   | 0.1%      |      | 100        | C C 4 |      |
|                                                 |                                              |                                                                                                                                                    |                                                                                            |         | 109.661 | (total) 📥 |      | 109        | .661  | ms   |
| Rur                                             | nning                                        | STM32 C-model - done (elapsed<br>original model<br>original model - done (elapsed                                                                  |                                                                                            |         |         |           |      |            |       |      |
| Rur<br>Rur                                      | nning<br>nning                               | original model<br>original model - done (elapsed                                                                                                   | l time 0.690s)                                                                             |         |         |           |      |            |       |      |
| Rur<br>Rur<br>Saving                            | nning<br>nning<br>g data                     | original model<br>original model - done (elapsed<br>in "C:\Users\danilo pau\.stm3                                                                  | l time 0.690s)<br>2cubemx" folder                                                          | 1       | <u></u> |           |      |            | 70    |      |
| Rur<br>Rur<br>Saving<br>creat                   | nning<br>nning<br>g data<br>ting "           | original model<br>original model - done (elapsed<br>in "C:\Users\danilo pau\.stm3<br>tinycnn_val_m_inputs_l.csv" d                                 | l time 0.690s)<br>2cubemx" folder<br>1type=[float32]                                       |         | сус     | les/      | MACC | : 5        | . 72  |      |
| Rur<br>Rur<br>Saving<br>creat<br>creat          | nning<br>nning<br>g data<br>ting "<br>ting " | original model<br>original model - done (elapsed<br>in "C:\Users\danilo pau\.stm3<br>tinycnn_val_m_inputs_l.csv" d<br>tinycnn_val_m_outputs_l.csv" | l time 0.690s)<br>2cubemx" folder<br>type=[float32]<br>dtype=[float32]                     |         | _       |           |      |            |       |      |
| Rur<br>Rur<br>Saving<br>creat<br>creat<br>creat | nning<br>nning<br>g data<br>ting "<br>ting " | original model<br>original model - done (elapsed<br>in "C:\Users\danilo pau\.stm3<br>tinycnn_val_m_inputs_l.csv" d                                 | l time 0.690s)<br>2cubemx" folder<br>1type=[float32]<br>dtype=[float32]<br>1type=[float32] |         | _       |           |      | : 5<br>all |       | yers |

NOTE: the output of the reference model is used as ground truth/reference value NOTE: ACC metric is not computed ("--classifier" option can be used to force it)

12r

tensor

OK

L2r error : 2.78001437e-07

Evaluation report (summary)

\_\_\_\_\_

acc

0.014533 0.000000 node\_28 [ai\_float, (1, 1, 50), m\_id=13] X-cross #1 n.a.

L2r error : 2.78001437e-07 (expected to be < 0.01)

rmse

acc=n.a., rmse=0.021833, mae=0.014533, 12r=0.000000

layers)

|      |    | 40 | - |
|------|----|----|---|
| STM3 | 2F | 43 | X |

----

Q

£ []

Tools

System view

Mode



### Case Study: Speech Denoise



life.augmente

https://it.mathworks.com/help/deeplearning/ug/denoise-speech-using-deep-learning-networks.html

https://it.mathworks.com/matlabcentral/fileexchange/67296-deep-learning-toolbox-converter-for-onnx-model-format

|              |   | 33,125 items (129.39 KiB)<br>4,141,181                       | SPC: |
|--------------|---|--------------------------------------------------------------|------|
| weights (ro) | • | 132,500 B (129.39 KiB)                                       | SPC  |
|              |   | 16,152 B (15.77 KiB)<br>20,796 B (20.31 KiB) = 16,152 + 4,12 |      |

## SPC5-AI v.2.0.0 SPC584B, 120MHZ

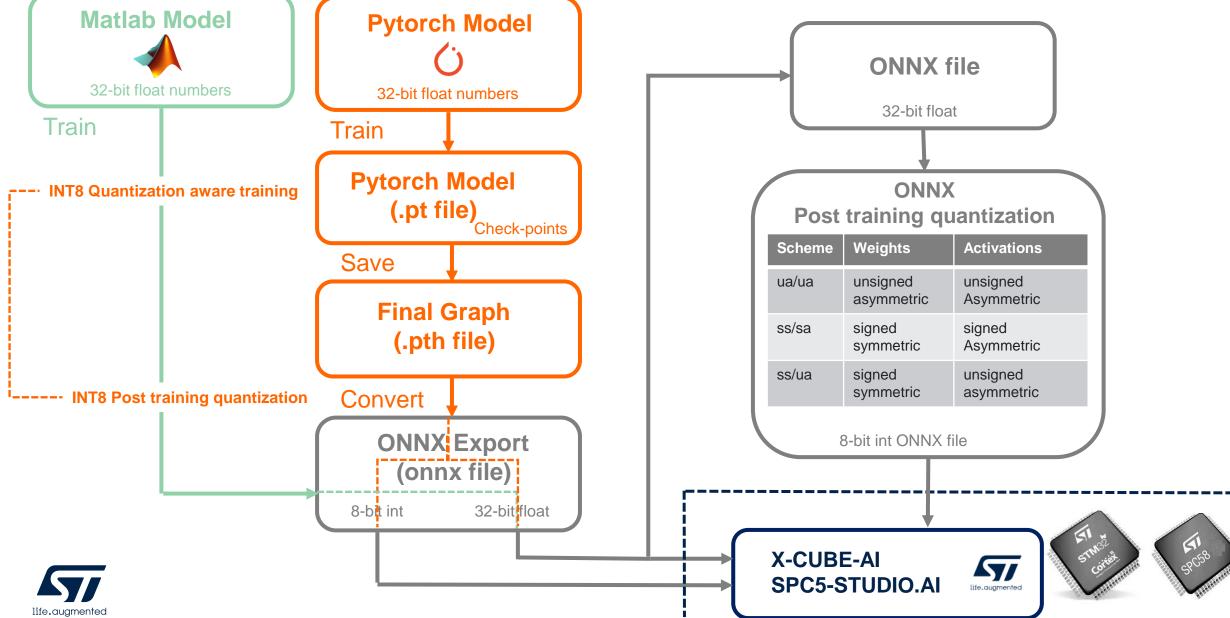
 Results for 10 inference(s) @120/120MHz (macc:4141181)

 device
 : 0x55AA55AA/UNKNOW @120MHz/120MHz (No FPU)

 duration
 : 348.927 ms (average)

 CPU cycles
 : 41871248 (average)

 cycles/MACC
 : 10.11 (average for all layers)


 c\_nodes
 : 17

| Clayer | id | desc                     | oshape       | fmt     | ms                        |
|--------|----|--------------------------|--------------|---------|---------------------------|
| 0      | 0  | 10022/(Container)        | (129, 8, 1)  | float32 | 0.393                     |
| 1      | 1  | 10004/(2D Convolutional) | (129, 1, 18) | float32 | 16.768                    |
| 2      | 3  | 10004/(2D Convolutional) | (129, 1, 30) | float32 | 28.135                    |
| 3      | 5  | 10004/(2D Convolutional) | (129, 1, 8)  | float32 | 22.520                    |
| 4      | 7  | 10004/(2D Convolutional) | (129, 1, 18) | float32 | 16.780                    |
| 5      | 9  | 10004/(2D Convolutional) | (129, 1, 30) | float32 | 28.122                    |
| 6      | 11 | 10004/(2D Convolutional) | (129, 1, 8)  | float32 | 22.530                    |
| 7      | 13 | 10004/(2D Convolutional) | (129, 1, 18) | float32 | 16.779                    |
| 8      | 15 | 10004/(2D Convolutional) | (129, 1, 30) | float32 | 28.132                    |
| 9      | 17 | 10004/(2D Convolutional) | (129, 1, 8)  | float32 | 22.522                    |
| 10     | 19 | 10004/(2D Convolutional) | (129, 1, 18) | float32 | 16.789                    |
| 11     | 21 | 10004/(2D Convolutional) | (129, 1, 30) | float32 | 28.123                    |
| 12     | 23 | 10004/(2D Convolutional) | (129, 1, 8)  | float32 | 22.531                    |
| 13     | 25 | 10004/(2D Convolutional) | (129, 1, 18) | float32 | 16.792                    |
| 14     | 27 | 10004/(2D Convolutional) | (129, 1, 30) | float32 | 28.135                    |
| 15     | 29 | 10004/(2D Convolutional) | (129, 1, 8)  | float32 | 22.521                    |
| 16     | 31 | 10004/(2D Convolutional) | (129, 1, 1)  | float32 | 11.355<br>348.927 (total) |
|        |    |                          |              |         | 540.527 (COCAT)           |

Complexity/12r error per-layer - macc=4,141,181 rom=132,500

| id             | layer (type)                                                                                                                                                                                                                                                                                                                                                                                                 | macc |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rom | 12r error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 25<br>27<br>29 | <pre>imageinput_Mean (Placeholder)<br/>imageinput_Sub (Eltwise)<br/>conv_1 (Conv2D)<br/>conv_2 (Conv2D)<br/>conv_3 (Conv2D)<br/>conv_4 (Conv2D)<br/>conv_5 (Conv2D)<br/>conv_6 (Conv2D)<br/>conv_7 (Conv2D)<br/>conv_8 (Conv2D)<br/>conv_9 (Conv2D)<br/>conv_10 (Conv2D)<br/>conv_11 (Conv2D)<br/>conv_11 (Conv2D)<br/>conv_12 (Conv2D)<br/>conv_13 (Conv2D)<br/>conv_14 (Conv2D)<br/>conv_15 (Conv2D)</pre> |      | 0.0%<br>0.0%<br>4.1%<br>8.5%<br>6.8%<br>4.1%<br>8.5%<br>6.8%<br>4.1%<br>8.5%<br>6.8%<br>4.1%<br>8.5%<br>6.8%<br>4.1%<br>8.5%<br>6.8%<br>4.1%<br>8.5%<br>6.8%<br>4.1%<br>8.5%<br>6.8%<br>4.1%<br>8.5%<br>6.8%<br>4.1%<br>8.5%<br>6.8%<br>4.1%<br>8.5%<br>6.8%<br>4.1%<br>8.5%<br>6.8%<br>4.1%<br>8.5%<br>6.8%<br>4.1%<br>8.5%<br>6.8%<br>4.1%<br>8.5%<br>6.8%<br>4.1%<br>8.5%<br>6.8%<br>4.1%<br>8.5%<br>6.8%<br>4.1%<br>8.5%<br>6.8%<br>4.1%<br>6.8%<br>4.1%<br>6.8%<br>4.1%<br>6.8%<br>4.1%<br>6.8%<br>4.1%<br>6.8%<br>4.2%<br>6.8%<br>4.2%<br>6.8%<br>4.2%<br>6.8%<br>4.2%<br>6.8%<br>4.2%<br>6.8%<br>4.2%<br>6.8%<br>4.2%<br>6.8%<br>4.2%<br>6.8%<br>4.2%<br>6.8%<br>4.2%<br>6.8%<br>4.2%<br>6.8%<br>4.2%<br>6.8%<br>4.2%<br>6.8%<br>4.2%<br>6.8%<br>4.2%<br>6.8%<br>3.2% |     | 3.1%<br>0.0%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>4.0%<br>8.2%<br>6.5%<br>3.1%<br>8.14623093e-07 * |  |  |  |
| nf             | L2r error 8.14623093e-07                                                                                                                                                                                                                                                                                                                                                                                     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |





## How to move forward :

- Needs
- Model zoo of Tiny networks for MCUs trained in Pytorch/Matlab/PaddlePaddle/? exported in ONNX
- Jupyter Notebook tutorials
  - Pytorch Tiny Neural Networks with int8 training aware/post training quantization procedures including exports to ONNX@int8 file format
  - ONNX@fp32 to ONNX@int8 Tiny Neural Networks with post training quantization procedures
- Support of int8 formats: ua/ua, ss/sa, ss/ua





Danilo Pau, graduated at Politecnico di Milano, on 1992 in Electronic Engineering. He joined SGS-THOMSON (now STMicroelectronics) on 1991 and worked on mpeg2 video memory reduction, then video coding, embedded graphics, computer vision, and currently on deep learning. During his career helped in transferring those developments into company products. Also funded and served as 1st Chairman of the STMicroelectronics Technical Staff Italian Community; he is currently Technical Director into System Research and Applications and a Fellow Member of ST. Since 2019 Danilo is an IEEE Fellow, serves as Industry Ambassador coordinator for IEEE Region 8 South Europe, is vice chair of the Task Force on "Intelligent Cyber-Physical Systems" within IEEE CIS and Member for the Machine learning, Deep learning and AI in CE (MDA) Technical Stream Committee IEEE Consumer Electronics Society (CESoc).

Contributed with 113 documents the development of Compact Descriptors for Visual Search (CDVS), CDVS successfully developed ISO-IEC 15938-13 MPEG standard. He was Funding Chair of MPEG Ad Hoc Group on Compact Descriptor for Video Analysis (CDVA), formerly Compact Descriptors for Video Search (CDViS). He also contributes (applications) to MPAI.community recently started by L. Chiariglione. His scientific production consists of 91 papers to date, 78 granted patents and more than 23 invited talks/seminars at various universities and conferences. He was also principal investigator into numerous funded projects at European and Italian level on embedded systems.

Danilo tutored lots of undergraduate students (till Msc graduation), Msc engineers and PhD students from various universities in Italy and India, one of the activities that he likes at most.



# Thank you

© STMicroelectronics - All rights reserved. ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <u>www.st.com/trademarks</u>. All other product or service names are the property of their respective owners.

