B UNNX
RUNTIME

* Peng Wang| Al Frameworks @ Microsoft

Common problems impacting ML productivity

> Inference latency is too high to put into production

<>| Training in Python but need to deploy into a C#/C++/Java app

Y Model needs to run on edge/IoT devices

[LJ§ Same model needs to run on different hardware and operating systems

v/ Need to support running models created from several different frameworks

() Training very large models takes too long

ONNX
RUNTIME

high-performance engine for machine learning models

Mobile (preview)

Training (preview)

Extensible

Cross Platform

Flexible

Supports full ONNX-ML
spec (v1.2-1.7)

Supports CPU, GPU, VPU

C#, C, C++, Java, JS and
Python APIs

Works on
-Mac, Windows, Linux
-x86, x64, ARM

Also built-in to Windows
10 natively (WinML)

github.com/microsoft/onnxruntime

Extensible “execution
provider” architecture to
plug-in custom operators,
optimizers, and hardware
accelerators

Distributed training
acceleration on multi-
node GPU

Large scale Transformer
models

Model-specific package
Reduced size

Android, iOS, Linux
X86, ARM

Training Design Principles

Eﬁ; Generic Framework for Training Extensible with new kernels, optimization
= Gy DNNs algorithms, etc.

a_a Current Implementation optimizes for Transformer-Based models.

S Adding model support based on customer demand

ONNX Runtime Training (Public Preview)

e Seamless integration with existing training

) frameworks for accelerated training and fine
Frontend PyTorch TF/Keras tuning of large transformer models

J
> * Incorporates latest algorithms and techniques

such as DeepSpeed/ZeRO and Parasail/Adasum

J

* Integrates with GPU for distributed training

ONNX Runtime \

i MSFT and 3P i i
Graph Compiler (MLIR) an innovations

Backend

MSR
DeepSpeed

Distributed Execution
MSR
Parasail

>
Nvidia
Accelerator CPU GPU FPGA B VPU DML NPU Megatron
SDKs
J

Augmenting ONNX graphs for training

* ORT Training takes an inference (“forward”) graph as input
* Training-specific functionality implemented as graph transformations

N

PyTorchto | - . .'
{ yONNx { Forward { Mixed Precision { Automatic { Training Graph { Distributed
4 V)) > |

Slreln Transformation Differentiation Optimization SelatlitlTlaliechilely

Conversion Optimization Setup

Forward graph (inference graph)

MatMul MatMul

(batch x 784) (batch x 128) (batch x 128) (batch x 10)

predictions

B (784 x 128) B (128x 10)

weight.0 weight.1
(784 x 128) (128 x 10)

Loss function (user-supplied

MatMul MatMul

(batch x 784) (batch x 128) (batch x 128) (batch x 10) (batch x 10)

SoftmaxCrossEntropy

B (784 x 128) B (128x 10)

(batch x 10)

weight.0 weight.1
(784 x 128) (128 x 10)

Backward graph (loss function gradient

(batch x 784) (batch x 128) (batch x 128) (batch x 10) (batch x 10)

SoftmaxCrossEntropy

B (784 x 128) B (128 x 10)

(batch x 10)

(batch x 10)

weight.0
(784 x 128)

weight.1
(128x 10)

(batch x 10)

SoftmaxCrossEntropyGrad

(1)

Constant
1

Backward graph (compute gradients

MatMul MatMul

(batch x 784) (batch x 128) (batch x 128)

(batch x 10) (batch x 10)
predictions SoftmaxCrossEntropy

B (784 x 128) B (128 x 10)

(batch x 10)
m atchx10) W
weight.0 loss
(784 x 128)
(1)
MatMulGrad* MatMulGrad*
(batch x 784) (batch x 128) (batch x 128) (batch x 10)
A (batch x784) ReluGrad A (batch x128) SoftmaxCrossEntropyGrad
B (784 x 128) B (128x 10)
C (batch x128) C (batch x10) (1)

1

Backward graph (use existing operators

MatMul MatMul

(batch x 784) (batch x 128) (batch x 128)

(batch x 10) (batch x 10)
predictions SoftmaxCrossEntropy

B (784 x 128) B (128 x 10)

(batch x 10)

m atchx10 w

loss

(1)

Gemm MatMulGrad*
(b3 84) T (batch x 128) (batch x 128) (batch x 10)
A’ (784 x batch) ReluGrad A (batch x128) SoftmaxCrossEntropyGrad
B (batch x 128) B (128x 10)
C (batch x10) (1)

1

Optimizer (Adam/Lamb

MatMul

B (784 x 128)

n (batch x 784)

A

weight.0
(784 x 128)

Gemm

AT (784 x batch)
B (batch x 128)

(784 x 128)

Adam Optimizer

weight.0’
(784 x 128)

(batch x 128)

Relu

(batch x 128)

ReluGrad

momentum.0.u
(784 x 128)

)

momentum.0.v
(784 x 128)

)

(batch x 128)

(batch x 124

MatMul

B (128 x 10)

weight.1
(128x 10)

4

MatMulGrad*
(batch x 10)

(batch x 10)

A (batch x128)
B (128x 10)
C (batch x 10)

(128 x 10)
momentum.1l.u

(128 x 10)

)
)

Adam Optimizer

weight.1‘
(128x 10)

momentum.1l.v
(128 x 10)

(batch x 10) (batch x 10)
predictions SoftmaxCrossEntropy

(batch x 10)

loss

(1)

SoftmaxCrossEntropyGrad

(1)

Constant
1

Training Acceleration

Usage of ORT Training at Microsoft

Team Scenario / Improvement
Model P
. . Pre-training From 4 days to ~2 days
OnifES SERIEES TuringNLR (1.4x higher throughput)
Pre-training From 8 days to 4.5 days
Bing Ads RoBERTa-XL as (Lax b th I ‘;t)
base model ' g Enp
' S € Now able to train; stqck
Office apps . . PyTorch could not train
for word prediction . .
with data parallelism
Pre-training GPT-2 From 8 days to 6.5
Visual Studio Medium for days (1.19x higher
IntelliSense throughput)

Accelerated training with ONNX Runtime

Office 365 pre-training 400M+ Model ;22 4
: . 45
Bing Ads pre-training S00M+ Mode! | ©
Visual Studio fine-tuning 300M+ Model _6'5 8

Days to train

® Using PyTorch + ONNX Runtime ® Using PyTorch

Nvidia A100

* FP16 and TF32 supported, BF16 is in progress
* Scales up to 512 A100 GPUs

BERT-L Pretraining (ORT vs. Nvidia PT)

peedup

i T N A B Ly

1 65536 1024 512 509.4 22.7%

Phasel 4 16384 256 128 1618 2024.3 25.1%
3 8192 128 64 3231 4058.5 25.6%

1 32768 2048 1024 78 96.2 23.3%

Phase2 4 8192 512 256 308 382 24.0%
8 4096 256 128 620 766.9 23.7%

* Both ORT and PyTorch are using mixed precision training with lamb
* PT numbers are adopted from Nvidia Deep Learning Examples Repo

https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT#pre-training-nvidia-dgx-a100-8x-a100-40gb

CUDA Kernel Optimizations

* Transformer models are sharing a “stable and small” set of operators
* Few variations of activation and normalization functions
e Easy to support the new models

» Kernel optimizations for BERT are transferable to other models
* Prioritize for generally applicable and reusable kernel optimizations

 RoBERTa, GPT-2, and other variants of transformer models run faster with
ORT out of the box

* Graph based optimization, no change in model definition

[Address Space

_ First-time Allocation

Reusing Buffer

Memory Optimizations

e Optimizing tensor placement in 2D

space of Memory-Time
* Heavily reusing allocated buffer space

* Minimizes memory fragmentations T T T T T T T T T Hime
* Predicts peak memory consumption before running the model

* Runs BERT-L @ 2x of PyTorch’s batch size

* Enables training GPT2-Medium on 16GB V100, which PyTorch runs
OOMs

* Allows fitting larger model

PyTorch

PyTorch model

Torch IR

—/

TensorFlow

TF model

GraphDef IR

-

ONNX Runtime

ONNX IR

y

Autodiff

y

Graph optimizations

(Parallelization, Fusion, DeepSpeed, PipeDream, ...)

y

ORT host runtime

(initialization, kernel launch, data feeding, monitoring, ...)

/%

CUDA
Runtime

.

Nvidia
GPU

| S —

A
ROCm
Runtime

S

AMD
GPU

Front-end integration

PyTorch integration: today

PyTorch

Model definition
class NeuralNet(torch.nn.Module):
def init (self, input_size, hidden_size, num_classes):

def forward(self, x):

model = NeuralNet(input_size=784, hidden_size=500, num_classes=10)

criterion = torch.nn.CrossEntropylLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=le-4)

Training Loop

for data, target in data_loader:
reset gradient buffer
optimizer.zero_grad()

forward
y_pred = model(data)
loss = criterion(output, target)

backward
loss.backward()

weight update
optimizer.step()

PyTorch + ONNX Runtime backend

Model definition
class NeuralNet(torch.nn.Module):
def __init_ (self, input_size, hidden_size, num_classes):

def forward(self, x):

model = NeuralNet(input_size=784, hidden_size=500, num_classes=10)
criterion = torch.nn.CrossEntropyLoss()

Describe entire computation to offload
optimizer = optim.SGDConfig(lr=1le-4)
model desc = {"inputs": [("x", ["batch", 784])],
"outputs": [("y", ["batch", 10])]}
trainer = ORTTrainer(model, optimizer, model desc, criterion)

Training Loop
for data, target in data_loader:
forward + backward + weight update
loss, y_pred = trainer.train_step(data, target)

PyTorch integration: next

PyTorch

Model definition
class NeuralNet(torch.nn.Module):
def init (self, input_size, hidden_size, num_classes):

def forward(self, x):

model = NeuralNet(input_size=784, hidden_size=500, num_classes=10)

criterion = torch.nn.CrossEntropylLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=le-4)

Training Loop

for data, target in data_loader:
reset gradient buffer
optimizer.zero_grad()

forward
y_pred = model(data)
loss = criterion(output, target)

backward
loss.backward()

weight update
optimizer.step()

PyTorch + ONNX Runtime backend

Model definition
class NeuralNet(torch.nn.Module):
def init (self, input_size, hidden_size, num_classes):

def forward(self, x):

model = NeuralNet(input_size=784, hidden_size=500, num_classes=10)
model = ORTModule(model)

criterion = torch.nn.CrossEntropyLoss()

optimizer = torch.optim.SGD(model.parameters(), lr=le-4)

Training Loop

for data, target in data_loader:
reset gradient buffer
optimizer.zero_grad()

forward
y_pred = model(data)
loss = criterion(output, target)

backward
loss.backward()

weight update
optimizer.step()

Example Description

Get started with ONNX Runtime with a simple PyTorch

getting-started
transformer model

Tra Il ng vidia-bert Using ONNX Runtime Training with BERT pretraining
Exam pleS S implementation in PyTorch maintained by nvidia

Using ONNX Runtime Training with GPT2 finetuning for
Language Modeling in PyTorch maintained by huggingface

huggingface-gpt2

e GitHub - microsoft/onnxruntime-training-examples: Examples for using
ONNX Runtime for model training.

https://github.com/microsoft/onnxruntime-training-examples
https://github.com/microsoft/onnxruntime-training-examples/blob/master/getting-started
https://github.com/microsoft/onnxruntime-training-examples/blob/master/nvidia-bert
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT
https://github.com/microsoft/onnxruntime-training-examples/blob/master/huggingface-gpt2
https://github.com/huggingface/transformers/tree/master/examples/language-modeling

More to Read

ONNX Runtime Training Technical Deep Dive - Microsoft Tech Community

Announcing accelerated training with ONNX Runtime—train models up to 45% faster }

Open Source Blog (microsoft.com)

Thanks
15 15

https://techcommunity.microsoft.com/t5/azure-ai/onnx-runtime-training-technical-deep-dive/ba-p/1398310
https://cloudblogs.microsoft.com/opensource/2020/05/19/announcing-support-for-accelerated-training-with-onnx-runtime/

