
UPDATE
(March 2021)

Topic: Training

• Peng Wang| AI Frameworks @ Microsoft

Common problems impacting ML productivity

Inference latency is too high to put into production​

Training in Python but need to deploy into a C#/C++/Java app​

Model needs to run on edge/IoT devices​

Same model needs to run on different hardware and operating systems​

Need to support running models created from several different frameworks​

Training very large models takes too long​

Extensible

Extensible “execution
provider” architecture to
plug-in custom operators,
optimizers, and hardware
accelerators

Flexible

Supports full ONNX-ML
spec (v1.2-1.7)

Supports CPU, GPU, VPU

C#, C, C++, Java, JS and
Python APIs

Cross Platform

Works on
-Mac, Windows, Linux
-x86, x64, ARM

Also built-in to Windows
10 natively (WinML)

github.com/microsoft/onnxruntime

high-performance engine for machine learning models

Training (preview)

Distributed training
acceleration on multi-
node GPU

Large scale Transformer
models

Mobile (preview)

Model-specific package
Reduced size
Android, iOS, Linux
X86, ARM

Training Design Principles

Generic Framework for Training
DNNs

Extensible with new kernels, optimization
algorithms, etc.

Current Implementation optimizes for Transformer-Based models.

Adding model support based on customer demand

ONNX Runtime Training (Public Preview)

• Seamless integration with existing training
frameworks for accelerated training and fine
tuning of large transformer models

• Incorporates latest algorithms and techniques
such as DeepSpeed/ZeRO and Parasail/Adasum

• Integrates with GPU for distributed training

PyTorchFrontend

Backend

IR ONNX

ONNX Runtime

TF/Keras Other

Accelerator
SDKs

CPU GPU FPGA VPU DML

Graph Compiler (MLIR)

NPU

MSFT and 3P innovations

MSR
DeepSpeed

MSR
Parasail

Nvidia
Megatron

Distributed Execution

Augmenting ONNX graphs for training

• ORT Training takes an inference (“forward”) graph as input

• Training-specific functionality implemented as graph transformations

PyTorch to
ONNX

Conversion

Forward
Graph

Optimization

Mixed Precision
Transformation

Automatic
Differentiation

Training Graph
Optimization

Distributed
Communication

Setup

Forward graph (inference graph)

 B (784 x 128)

 MatMul

X predictionsRelu
(batch x 784) (batch x 10)

 B (128 x 10)

 MatMul
(batch x 128) (batch x 128)

weight.0
(784 x 128)

weight.1
(128 x 10)

Loss function (user-supplied)

 B (784 x 128)

 MatMul

X predictionsRelu
(batch x 784) (batch x 10)

 B (128 x 10)

 MatMul
(batch x 128) (batch x 128)

SoftmaxCrossEntropy

labels

(batch x 10)

(batch x 10)

loss

(1)

weight.0
(784 x 128)

weight.1
(128 x 10)

 B (784 x 128)

 MatMul

X predictionsRelu
(batch x 784) (batch x 10)

 B (128 x 10)

 MatMul
(batch x 128) (batch x 128)

SoftmaxCrossEntropy

labels

(batch x 10)

(batch x 10)

loss

(1)

SoftmaxCrossEntropyGrad

Constant
1

(1)

(1)

weight.0
(784 x 128)

weight.1
(128 x 10)

(batch x 10)

(batch x 10)

Backward graph (loss function gradient)

 B (784 x 128)

 MatMul

X predictionsRelu
(batch x 784) (batch x 10)

 B (128 x 10)

 MatMul
(batch x 128) (batch x 128)

SoftmaxCrossEntropy

labels

(batch x 10)

(batch x 10)

loss

(1)

SoftmaxCrossEntropyGrad

Constant
1

(1)

(1)

weight.0
(784 x 128)

weight.1
(128 x 10)

A (batch x 128)
B (128 x 10)
C (batch x 10)

 MatMulGrad*

A (batch x 784)
B (784 x 128)
C (batch x 128)

 MatMulGrad*

ReluGrad
(batch x 10)(batch x 128)(batch x 128)

(batch x 10)

(batch x 784)

(128 x 10)(784 x 128)

Backward graph (compute gradients)

 B (784 x 128)

 MatMul

X predictionsRelu
(batch x 784) (batch x 10)

 B (128 x 10)

 MatMul
(batch x 128) (batch x 128)

SoftmaxCrossEntropy

labels

(batch x 10)

(batch x 10)

loss

(1)

SoftmaxCrossEntropyGrad

Constant
1

(1)

(1)

weight.0
(784 x 128)

weight.1
(128 x 10)

A (batch x 128)
B (128 x 10)
C (batch x 10)

 MatMulGrad*

AT (784 x batch)
B (batch x 128)

 Gemm

ReluGrad
(batch x 10)(batch x 128)(batch x 128)

(batch x 10)

(batch x 784)

(128 x 10)(784 x 128)

Backward graph (use existing operators)

Optimizer (Adam/Lamb)

 B (784 x 128)

 MatMul

X predictionsRelu
(batch x 784) (batch x 10)

 B (128 x 10)

 MatMul
(batch x 128) (batch x 128)

SoftmaxCrossEntropy

labels

(batch x 10)

(batch x 10)

loss

(1)

SoftmaxCrossEntropyGrad

Constant
1

(1)

(1)

weight.0
(784 x 128)

weight.1
(128 x 10)

A (batch x 128)
B (128 x 10)
C (batch x 10)

 MatMulGrad*

AT (784 x batch)
B (batch x 128)

 Gemm

ReluGrad
(batch x 10)(batch x 128)(batch x 128)

(784 x 128) (128 x 10)

Adam Optimizer Adam Optimizer

weight.0
(784 x 128)

weight.1
(128 x 10)

(batch x 10)

momentum.0.u
(784 x 128)

momentum.0.v
(784 x 128)

momentum.1.u
(128 x 10)

momentum.1.v
(128 x 10)

Training Acceleration
Transformer models

Usage of ORT Training at Microsoft

Team
Scenario /
Model

Improvement

Office services
Pre-training
TuringNLR

From 4 days to ~2 days
(1.4x higher throughput)

Bing Ads
Pre-training
RoBERTa-XL as
base model

From 8 days to 4.5 days
(1.4x higher throughput)

Office apps
Fine-tuning GPT-2
for word prediction

Now able to train; stock
PyTorch could not train
with data parallelism

Visual Studio
Pre-training GPT-2
Medium for
IntelliSense

From 8 days to 6.5
days (1.19x higher
throughput)

Nvidia A100

• FP16 and TF32 supported, BF16 is in progress

• Scales up to 512 A100 GPUs

GPUs
Batch size /

GPU

Accumulation steps Throughput (seq/sec) Throughput
Speedup

(ORT vs PT)PT ORT PT ORT

Phase 1
1 65536 1024 512 415 509.4 22.7%
4 16384 256 128 1618 2024.3 25.1%
8 8192 128 64 3231 4058.5 25.6%

Phase 2
1 32768 2048 1024 78 96.2 23.3%
4 8192 512 256 308 382 24.0%
8 4096 256 128 620 766.9 23.7%

* Both ORT and PyTorch are using mixed precision training with lamb
* PT numbers are adopted from Nvidia Deep Learning Examples Repo

BERT-L Pretraining (ORT vs. Nvidia PT)

https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT#pre-training-nvidia-dgx-a100-8x-a100-40gb

CUDA Kernel Optimizations

• Transformer models are sharing a “stable and small” set of operators
• Few variations of activation and normalization functions
• Easy to support the new models

• Kernel optimizations for BERT are transferable to other models
• Prioritize for generally applicable and reusable kernel optimizations
• RoBERTa, GPT-2, and other variants of transformer models run faster with

ORT out of the box

• Graph based optimization, no change in model definition

Memory Optimizations

• Optimizing tensor placement in 2D

space of Memory-Time
• Heavily reusing allocated buffer space

• Minimizes memory fragmentations

• Predicts peak memory consumption before running the model

• Runs BERT-L @ 2x of PyTorch’s batch size

• Enables training GPT2-Medium on 16GB V100, which PyTorch runs
OOMs

• Allows fitting larger model

Address Space

Time

First-time Allocation
Reusing Buffer

PyTorch model TF model

Torch IR GraphDef IR

ONNX IR

Autodiff

Graph optimizations
(Parallelization, Fusion, DeepSpeed, PipeDream, …)

ORT host runtime
(initialization, kernel launch, data feeding, monitoring, …)

CUDA
Runtime

Driver

ROCm
Runtime

Driver

Nvidia
GPU

AMD
GPU

PyTorch TensorFlow

ONNX Runtime

Front-end integration

Model definition
class NeuralNet(torch.nn.Module):

def __init__(self, input_size, hidden_size, num_classes):
...

def forward(self, x):
...

model = NeuralNet(input_size=784, hidden_size=500, num_classes=10)

criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)

Training Loop
for data, target in data_loader:

reset gradient buffer
optimizer.zero_grad()

forward
y_pred = model(data)
loss = criterion(output, target)

backward
loss.backward()

weight update
optimizer.step()

PyTorch integration: today
PyTorch PyTorch + ONNX Runtime backend

Model definition
class NeuralNet(torch.nn.Module):

def __init__(self, input_size, hidden_size, num_classes):
...

def forward(self, x):
...

model = NeuralNet(input_size=784, hidden_size=500, num_classes=10)

criterion = torch.nn.CrossEntropyLoss()

Describe entire computation to offload
optimizer = optim.SGDConfig(lr=1e-4)
model_desc = {"inputs": [("x", ["batch", 784])],

"outputs": [("y", ["batch", 10])]}
trainer = ORTTrainer(model, optimizer, model_desc, criterion)

Training Loop
for data, target in data_loader:

forward + backward + weight update
loss, y_pred = trainer.train_step(data, target)

PyTorch integration: next

Model definition
class NeuralNet(torch.nn.Module):

def __init__(self, input_size, hidden_size, num_classes):
...

def forward(self, x):
...

model = NeuralNet(input_size=784, hidden_size=500, num_classes=10)

criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)

Training Loop
for data, target in data_loader:

reset gradient buffer
optimizer.zero_grad()

forward
y_pred = model(data)
loss = criterion(output, target)

backward
loss.backward()

weight update
optimizer.step()

Model definition
class NeuralNet(torch.nn.Module):

def __init__(self, input_size, hidden_size, num_classes):
...

def forward(self, x):
...

model = NeuralNet(input_size=784, hidden_size=500, num_classes=10)
model = ORTModule(model)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)

Training Loop
for data, target in data_loader:

reset gradient buffer
optimizer.zero_grad()

forward
y_pred = model(data)
loss = criterion(output, target)

backward
loss.backward()

weight update
optimizer.step()

PyTorch PyTorch + ONNX Runtime backend

Training
Examples

• GitHub - microsoft/onnxruntime-training-examples: Examples for using
ONNX Runtime for model training.

Example Description

getting-started
Get started with ONNX Runtime with a simple PyTorch
transformer model

nvidia-bert
Using ONNX Runtime Training with BERT pretraining
implementation in PyTorch maintained by nvidia

huggingface-gpt2
Using ONNX Runtime Training with GPT2 finetuning for
Language Modeling in PyTorch maintained by huggingface

https://github.com/microsoft/onnxruntime-training-examples
https://github.com/microsoft/onnxruntime-training-examples/blob/master/getting-started
https://github.com/microsoft/onnxruntime-training-examples/blob/master/nvidia-bert
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT
https://github.com/microsoft/onnxruntime-training-examples/blob/master/huggingface-gpt2
https://github.com/huggingface/transformers/tree/master/examples/language-modeling

Thanks
谢谢

ONNX Runtime Training Technical Deep Dive - Microsoft Tech Community,

Announcing accelerated training with ONNX Runtime—train models up to 45% faster -
Open Source Blog (microsoft.com)

More to Read

https://techcommunity.microsoft.com/t5/azure-ai/onnx-runtime-training-technical-deep-dive/ba-p/1398310
https://cloudblogs.microsoft.com/opensource/2020/05/19/announcing-support-for-accelerated-training-with-onnx-runtime/

