
TensorFlow Lite to ONNX
Conversion

ONNX Runtime Mobile

TO M W I L D E N H A I N

S COT T M C K AY

M I C RO S OF T

TensorFlow Lite to ONNX
TOM WILDENHAIN SOFTWARE ENGINEER, ONNX CONVERTERS TEAM

MICROSOFT

TensorFlow TFLite
◦ Used for inference and training

◦ > 1,000 ops

◦ Already have conversions for many ops

◦ Lightweight runtime used for inference

◦ ~130 ops

◦ Models created from TensorFlow

… …

TFLite Conversion

Automatic quantization
support!

Some models are only
available for TFLite

TFLite models are
often cleaner

pip install tf2onnx
python -m tf2onnx.convert --tflite ssdmobilenet.tflite --output ssdmobilenet.onnx --opset 13

Conversion Process

1. Rewriters
◦ Convert op patterns

2. Handlers
◦ Convert individual ops

3. Optimizers
◦ Remove unnecessary ops

Conversion Process

1. Rewriters
◦ Convert op patterns

2. Handlers
◦ Convert individual ops

3. Optimizers
◦ Remove unnecessary ops

Conversion Process

1. Rewriters
◦ Convert op patterns

2. Handlers
◦ Convert individual ops

3. Optimizers
◦ Remove unnecessary ops

Conversion Process

1. Rewriters
◦ Convert op patterns

2. Handlers
◦ Convert individual ops

3. Optimizers
◦ Remove unnecessary ops

Quantization

TFLite graph ONNX graph

quantization:
0.033 * (q - 132)

tf2onnx
adds q/dq

ORT recognizes op
with quantized
inputs/outputs

(in ORT)

Dequantizing Models
Detect ReLU and ReLU6 ops from quantization range

quantization:
0 ≤ 0.023 * q ≤ 5.999

--dequantize

Support and Feature Requests
Please submit feature requests to GitHub

TFLite -> ONNX conversion is new, expect improvements as we support more ops

github.com/onnx/tensorflow-onnx

ONNX Runtime Mobile
SCOTT MCKAY ONNX RUNTIME MOBILE TECHNICAL LEAD

MICROSOFT

ONNX Runtime Mobile
ONNX Runtime Mobile is a variant of ONNX Runtime that minimizes binary size for mobile and
edge scenarios
◦ Same codebase as ONNX Runtime

◦ Available since ONNX Runtime v1.5, Sept 2020

Includes only required operator kernels in the build
◦ Can also reduce types supported by operator kernels

Custom format for the model file

ONNX Runtime Mobile
Runtime usage of ONNX Runtime Mobile is the same as regular ONNX Runtime
◦ C, C++, Python and Java APIs are available

Supports NNAPI Execution Provider on Android

Supports CoreML Execution Provider on iOS (preview)

Documentation:

◦ ONNX_Runtime_for_Mobile_Platforms.md

https://github.com/microsoft/onnxruntime/blob/master/docs/ONNX_Runtime_for_Mobile_Platforms.md

ORT format model
Created from an ONNX model
◦ Python script handles conversion

During conversion:
◦ ONNX Runtime optimizations are applied
◦ e.g. constant folding

◦ Nodes are assigned to kernels
◦ No ONNX schema dependency

◦ Significant binary size and memory usage saving

Uses google::flatbuffers

Operator Kernel selection
Configuration file specifies the kernels to include in the build
◦ Model conversion script will automatically generate configuration file when converting models

◦ Configuration file can also be manually created/edited

Example config:
◦ ai.onnx;11;AveragePool,Conv,Reshape,Shape,Softmax,Squeeze,Transpose

Reduced Type Support
Can limit types that operator kernels support
◦ Model conversion script can automatically detect required types on a per-operator basis

◦ Alternatively, can specify a global list of types to support

Model based type reduction generally reduces kernel binary size by 25 - 33%

Available in ONNX Runtime v1.7
◦ March 2021

ORT Mobile Usage

Binary size
Primary choices that determine binary size:
◦ Operators and types to include

◦ Enable/disable exceptions

◦ Enable/disable support for traditional ML operators

◦ Use static or shared libc++ on Android

Base build size for Android ARM64
NDK 21.1, no operator kernels, shared libc++,
exceptions and traditional ML support disabled

libonnxruntime.so: 755KB (280KB in AAR)

With operator kernels required by Mobilenet libonnxruntime.so: 895KB (342KB in AAR)

With reduced type support enabled libonnxruntime.so: 851KB (325KB in AAR)
31% reduction in size of kernels

NNAPI Support
Usage of NNAPI is determined at runtime
◦ based on whether NNAPI is available and device capabilities

◦ e.g. older version of NNAPI may not support as many operators

Fallback to CPU execution if node cannot be run using NNAPI

Available in ORT v1.6
◦ December 2020

Questions and Feature Requests
Please reach out to the ONNX Runtime team
◦ https://github.com/microsoft/onnxruntime/discussions

https://github.com/microsoft/onnxruntime/discussions

