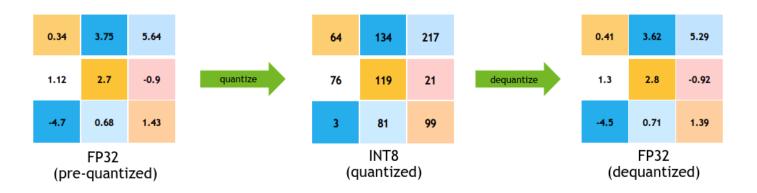


INT8 INFERENCE OF QUANTIZATION-AWARE TRAINED MODELS USING ONNX-TENSORRT

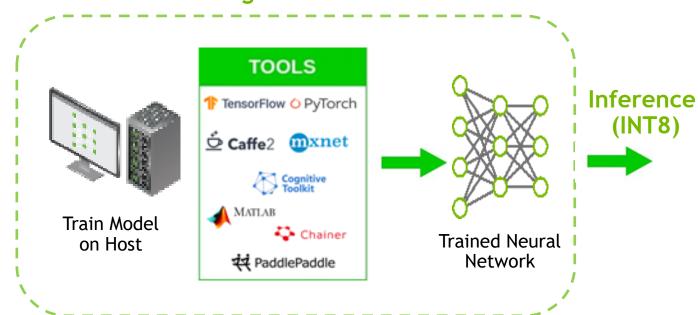
Presenters: Dheeraj Peri

INTRODUCTION TO QUANTIZATION



- What is Quantization?
 - Quantization is the process of converting continuous values to discrete set of values using linear/non-linear scaling techniques.
- High precision is necessary during training for fine-grain weight updates.
- High precision is not usually necessary during inference and may hinder the deployment of AI models in real-time and/or in resource-limited devices.
- INT8 is computationally less expensive and has lower memory footprint.
- INT8 precision results in faster inference with similar performance.

FP32/FP16 Training



QUANTIZATION SCHEMES

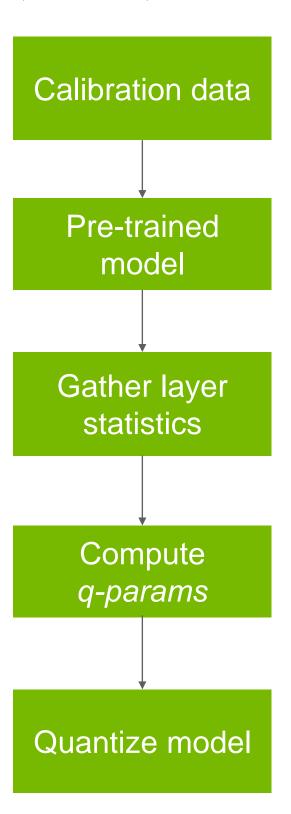
Floating point tensors can be converted to lower precision tensors using a variety of quantization schemes.

```
Example: R = s * (Q - z),
where R is the real value,
Q is the quantized value,
s (scale) and z (zero-point) are the quantization parameters (q-params) to be determined
```

- Q-params can be determined with:
 - Post-Training Quantization (PTQ)
 - Quantization-Aware Training (QAT)

POST TRAINING QUANTIZATION (PTQ)

- Start with a pre-trained model and run it on a calibration dataset.
- Calibration data can be a subset of training or validation data.
- Calculate dynamic ranges of weights and activations in the network to compute quantization parameters (*q-params*).
- Quantize the network using q-params and run inference.



QUANTIZATION AWARE TRAINING (QAT)

- Start with a pre-trained model and introduce quantize and dequantize
 (QDQ) nodes at desired layers.
- Finetune it for a small number of epochs.
- Simulates the quantization process that occurs during inference.
- The goal is to learn the *q-params/model parameters* which can help to reduce the accuracy drop between the quantized model and pre-trained model.



QAT FOR TENSORFLOW 2.0

TFMOT (TensorFlow Model Optimization Toolkit)

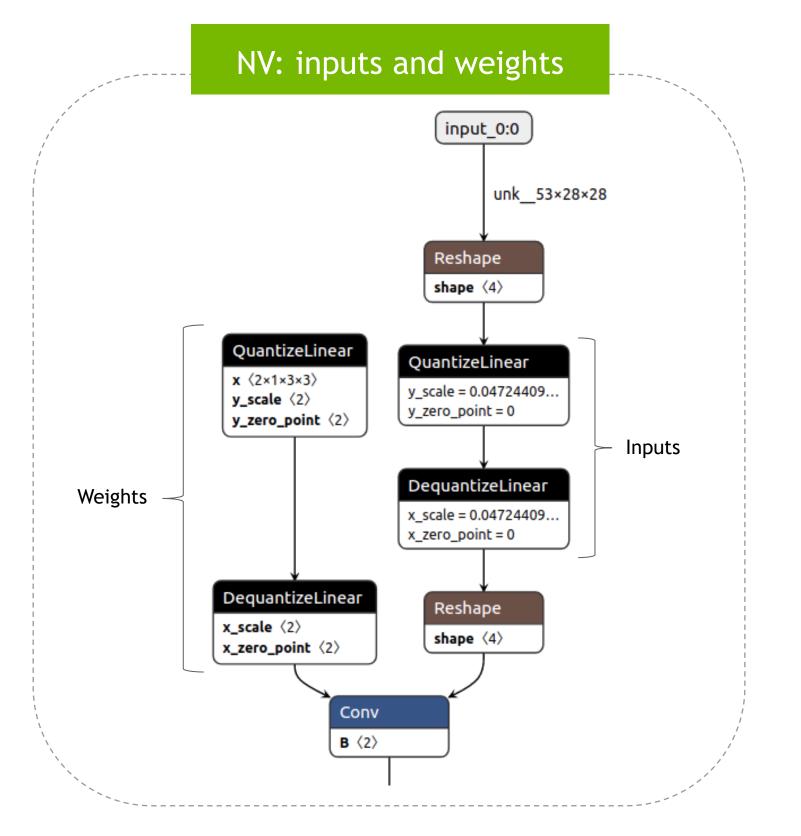
- Implements TensorFlow quantization recipe designed for TensorFlow lite.
- Supports quantization of the whole model (full) and of some layers (partial by layer class).
- Quantization is performed using tf.quantization.fake_quant_with_min_max_vars op.

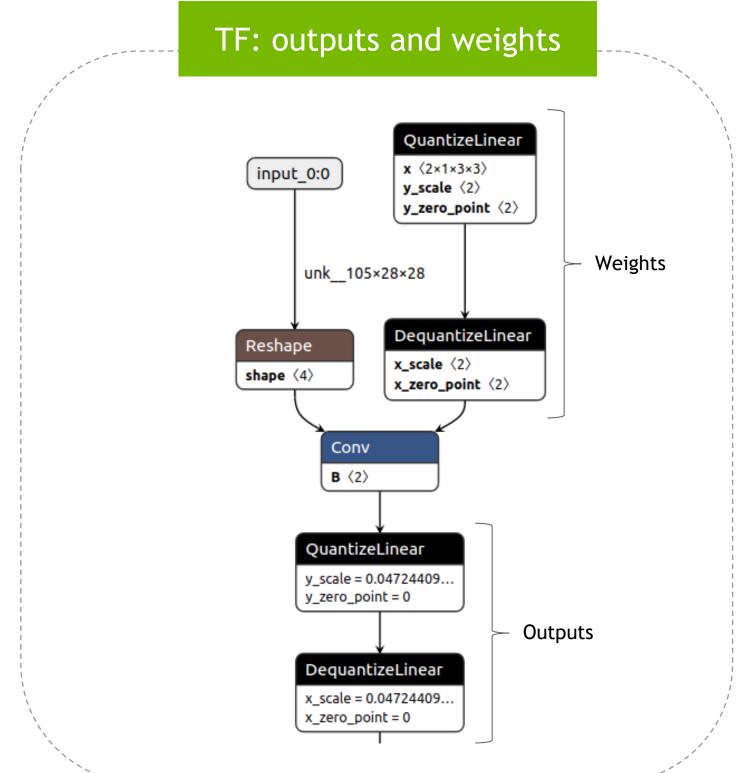
NVIDIA TF2 Quantization Toolkit

- Implements NVIDIA recommended quantization recipe optimized for TensorRT needed for model acceleration.
- Offers new features of top of what TFMOT offers:
 - Quantize layers with both layer name or layer class as attributes.
 - Programmable, pattern-based quantization
 - Quantization is performed using **tf.quantization.quantize_and_dequantize_v2** op.
- Note: To get the best performance for a QAT model on a GPU using ONNX-TensorRT, we recommend using our NVIDIA TF2
 Quantization toolkit.

QUANTIZATION RECIPES

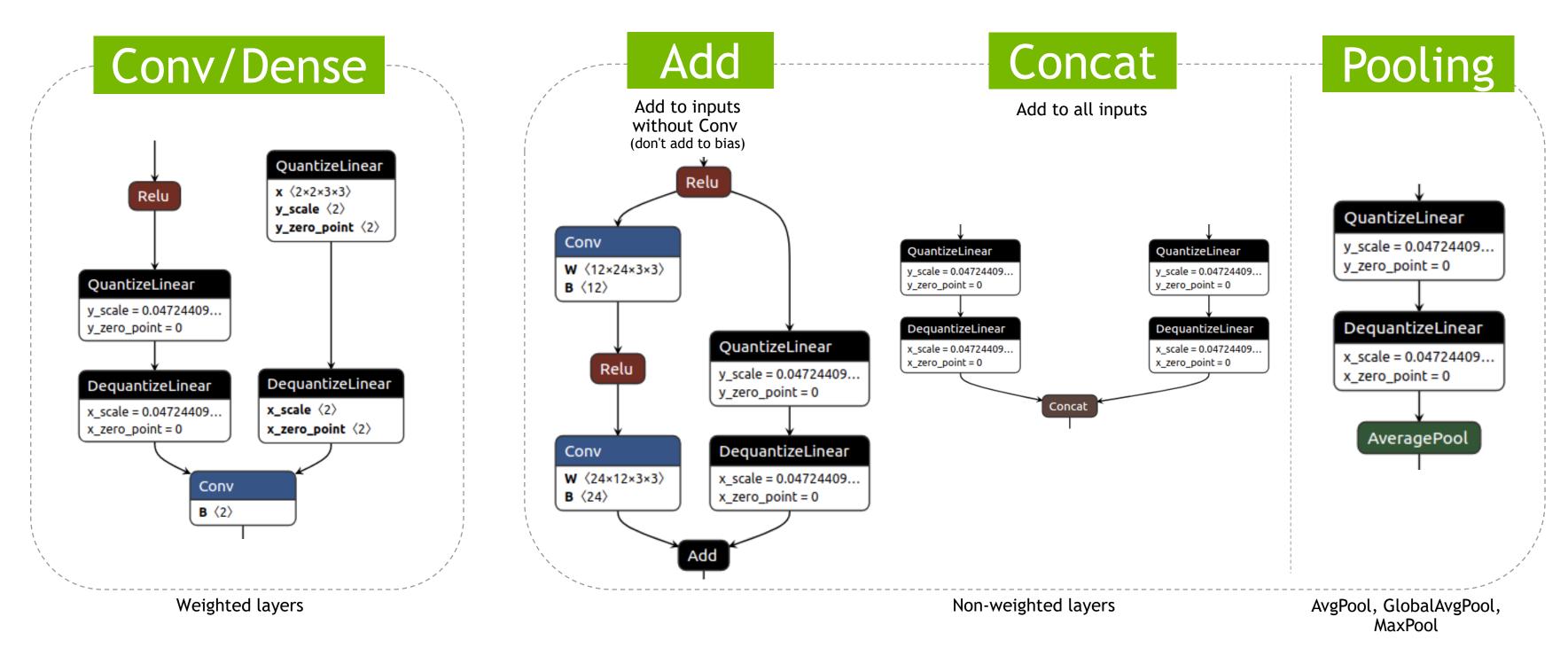
NVIDIA vs. TensorFlow





QDQ PLACEMENTS

According to TensorRT's recommendation



WORKFLOW FOR DEPLOYMENT

TF 2.0 Pretrained Model to INT8 TensorRT Engine

Pre-trained Quantize model Fine-tune and TensorFlow 2.0 with Nvidia model Toolkit Tool

TENSORFLOW MODEL QUANTIZATION

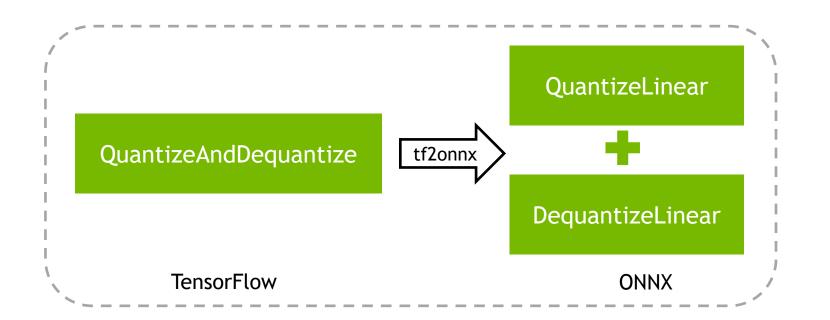
Quantization Aware Training using NVIDIA toolkit

```
import tensorflow as tf
from tensorflow quantization import quantize model
x train, x test, y train, y test = DataLoader(....) # Load dataset
                                                           # Define model structure
model = MyModelClass(*args, **kwargs)
model.load weights("pretrained ckpt")
model = quantize model(model)
                                                                                    4 lines!
# Compile and fine-tune quantized model
model.compile(optimizer="adam",
             loss=tf.keras.losses.SparseCategoricalCrossentropy(from logits=True),
             metrics=["accuracy"])
model.fit(x train, y train, batch size=128, epochs=5, validation split=0.1)
model.save_weights("quantized_finetuned_ckpt")
                                                            # Save quantized and fine-tuned model weights
```

DEPLOYMENT WITH ONNX-TENSORRT

Conversion via ONNX

- Convert your finetuned QAT model to ONNX using *tf2onnx*.
- ► tf2onnx is a standard way to convert TF models into ONNX.
- ► It has conversion support for many standard DL operators. Support for quantization operators has been added.

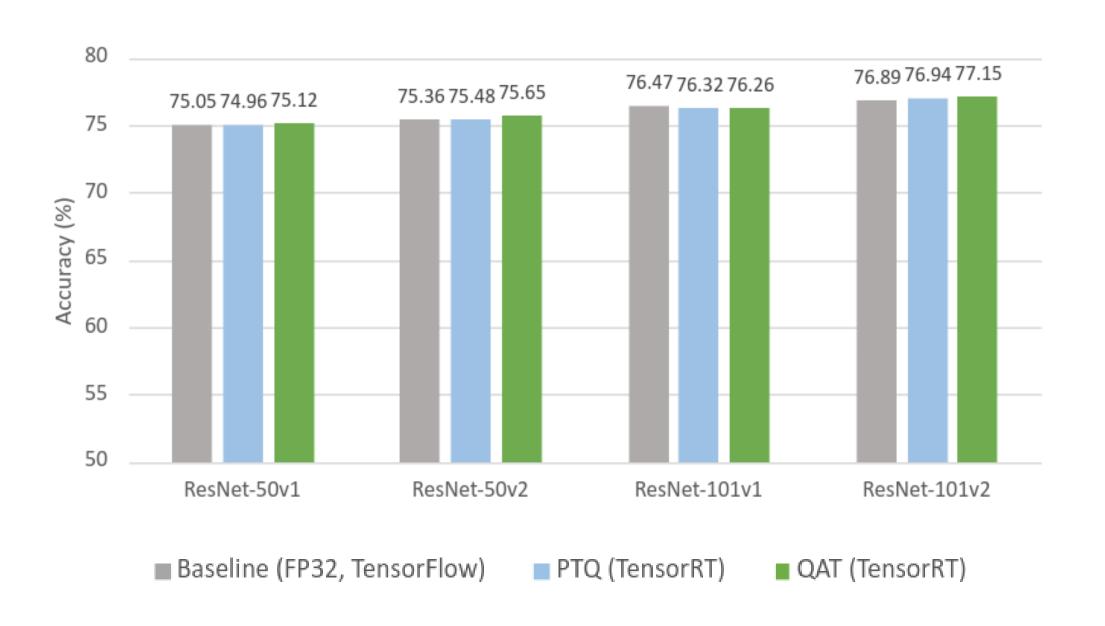


- Deploy the ONNX graph with TensorRT:
 - ONNX Parser in TensorRT parses the ONNX graph and converts into a TensorRT network definition. https://github.com/onnx/onnx-tensorrt
 - QDQ optimizations and fusions are performed to build an optimized TensorRT engine.

ACCURACY

Evaluating models in FP32 vs INT8 precision

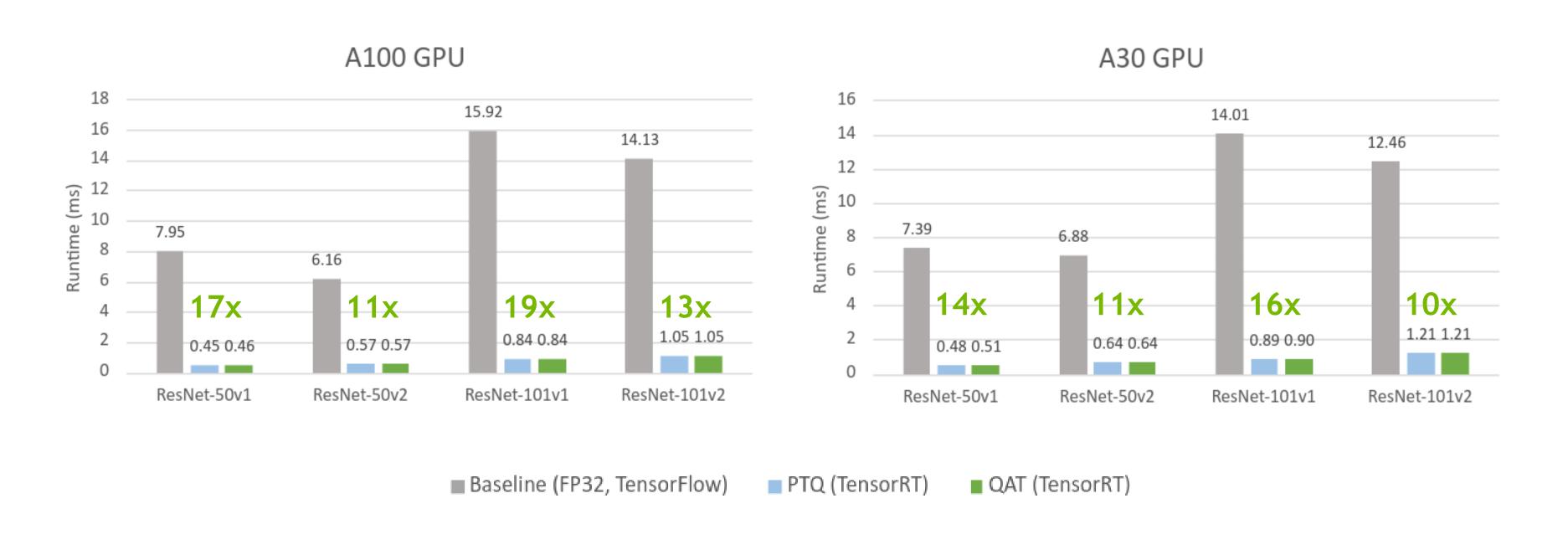
TensorFlow 2.8, TensorRT 8.4-EA



LATENCY

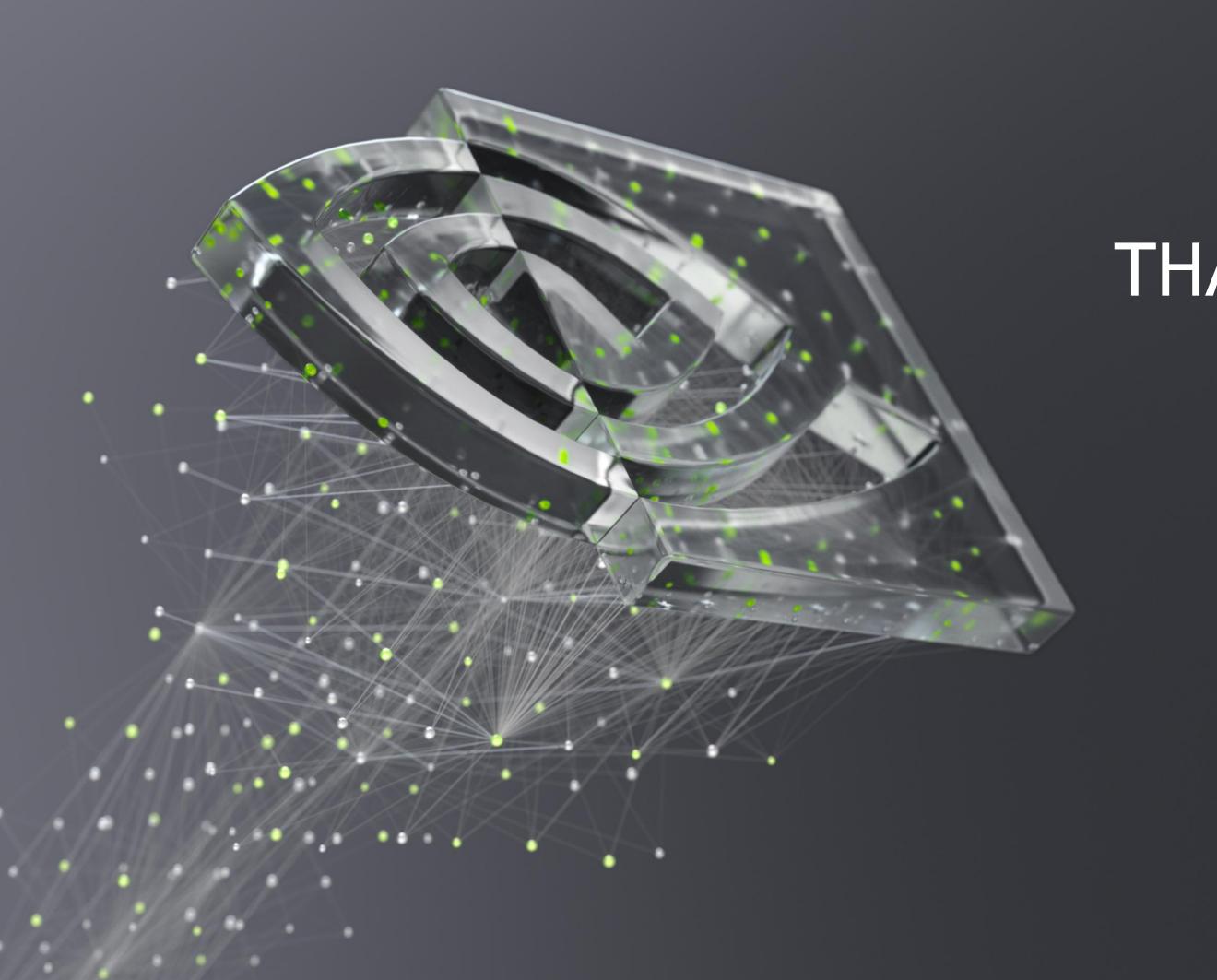
Evaluating models in FP32 vs INT8 precision

TensorFlow 2.8, TensorRT 8.4-EA



CONCLUSION

- Quantization-Aware Training provides an alternative to deploy deep neural networks in lower precision.
- QAT models might be less prone to accuracy drop during inference compared to PTQ models due to modelparameters fine-tuning.
- We demonstrated an end-to-end QAT workflow from TensorFlow to TensorRT deployment via ONNX. TF2ONNX enables converting TF models into ONNX graphs which is then optimized by TensorRT.
- Our experiments with ResNet models showed that the INT8 accuracy is on par with the FP32 baseline accuracy and that QAT latency is on par with PTQ



THANK YOU!

