
Presenters: Dheeraj Peri

INT8 INFERENCE OF QUANTIZATION-AWARE
TRAINED MODELS USING ONNX-TENSORRT

2

DEEP NEURAL NETWORKS QUANTIZATION

Post Training Quantization (PTQ)

Quantization Aware Training (QAT)

END-TO-END WORKFLOW

TensorFlow Quantization and Fine-tuning

TensorRT Deployment via ONNX

EXPERIMENTS

Case-Study

Results

CONTENTS

3

DEEP NEURAL NETWORKS
QUANTIZATION

4

INTRODUCTION TO QUANTIZATION

What is Quantization?

Quantization is the process of converting continuous values to discrete
set of values using linear/non-linear scaling techniques.

High precision is necessary during training for fine-grain weight
updates.

High precision is not usually necessary during inference and
may hinder the deployment of AI models in real-time and/or
in resource-limited devices.

INT8 is computationally less expensive and has lower memory
footprint.

INT8 precision results in faster inference with similar performance.

Train Model
on Host Trained Neural

Network

FP32/FP16 Training

Inference
(INT8)

5

QUANTIZATION SCHEMES

Floating point tensors can be converted to lower precision tensors using a variety of quantization schemes.

Example: R = s * (Q - z),
where R is the real value,

Q is the quantized value,
s (scale) and z (zero-point) are the quantization parameters (q-params) to be determined

Q-params can be determined with:

Post-Training Quantization (PTQ)

Quantization-Aware Training (QAT)

6

POST TRAINING QUANTIZATION (PTQ)

Start with a pre-trained model and run it on a calibration dataset.

Calibration data can be a subset of training or validation data.

Calculate dynamic ranges of weights and activations in the network to compute

quantization parameters (q-params).

Quantize the network using q-params and run inference.

Pre-trained

model

Gather layer

statistics

Quantize model

Calibration data

Compute

q-params

7

QUANTIZATION AWARE TRAINING (QAT)

Start with a pre-trained model and introduce quantize and dequantize

(QDQ) nodes at desired layers.

Finetune it for a small number of epochs.

Simulates the quantization process that occurs during inference.

The goal is to learn the q-params/model parameters which can help to

reduce the accuracy drop between the quantized model and pre-trained

model.

Add QDQ nodes

Finetune with

QDQ nodes

Quantize model

for inference

Pre-trained

model

Store q-params

8

QAT FOR TENSORFLOW 2.0

TFMOT (TensorFlow Model Optimization Toolkit)

Implements TensorFlow quantization recipe designed for TensorFlow lite.

Supports quantization of the whole model (full) and of some layers (partial by layer class).

Quantization is performed using tf.quantization.fake_quant_with_min_max_vars op.

• NVIDIA TF2 Quantization Toolkit

• Implements NVIDIA recommended quantization recipe optimized for TensorRT needed for model acceleration.

• Offers new features of top of what TFMOT offers:

• Quantize layers with both layer name or layer class as attributes.

• Programmable, pattern-based quantization

• Quantization is performed using tf.quantization.quantize_and_dequantize_v2 op.

• Note: To get the best performance for a QAT model on a GPU using ONNX-TensorRT, we recommend using our NVIDIA TF2
Quantization toolkit.

9

QUANTIZATION RECIPES
NVIDIA vs. TensorFlow

NV: inputs and weights TF: outputs and weights

Weights

Outputs

Weights

Inputs

10

QDQ PLACEMENTS
According to TensorRT's recommendation

Conv/Dense

Weighted layers

Add Concat

Non-weighted layers

Pooling
Add to inputs
without Conv
(don't add to bias)

Add to all inputs

AvgPool, GlobalAvgPool,
MaxPool

11

END-TO-END WORKFLOW

12

WORKFLOW FOR DEPLOYMENT
TF 2.0 Pretrained Model to INT8 TensorRT Engine

Pre-trained

TensorFlow 2.0

model

Quantize model

with Nvidia

toolkit

Fine-tune and

save quantized

model

Convert

TensorFlow 2.0

model to ONNX

Generate TensorRT

INT8 engine from

ONNX

13

import tensorflow as tf

from tensorflow_quantization import quantize_model

x_train, x_test, y_train, y_test = DataLoader(....) # Load dataset

model = MyModelClass(*args, **kwargs) # Define model structure

model.load_weights("pretrained_ckpt")

model = quantize_model(model)

Compile and fine-tune quantized model

model.compile(optimizer="adam",

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),

metrics=["accuracy"])

model.fit(x_train, y_train, batch_size=128, epochs=5, validation_split=0.1)

model.save_weights("quantized_finetuned_ckpt") # Save quantized and fine-tuned model weights

TENSORFLOW MODEL QUANTIZATION
Quantization Aware Training using NVIDIA toolkit

4 lines!

N
V
ID

IA
 Q

u
a
n
ti

z
a
ti

o
n
 a

n
d
 F

in
e
-t

u
n
in

g

14

• Convert your finetuned QAT model to ONNX using tf2onnx.

tf2onnx is a standard way to convert TF models into ONNX.

It has conversion support for many standard DL operators.
Support for quantization operators has been added.

Deploy the ONNX graph with TensorRT:

ONNX Parser in TensorRT parses the ONNX graph and converts into a TensorRT network definition.
https://github.com/onnx/onnx-tensorrt

QDQ optimizations and fusions are performed to build an optimized TensorRT engine.

DEPLOYMENT WITH ONNX-TENSORRT
Conversion via ONNX

QuantizeAndDequantize

QuantizeLinear

DequantizeLinear

TensorFlow ONNX

tf2onnx

https://github.com/onnx/onnx-tensorrt

15

RESULTS

16

ACCURACY
Evaluating models in FP32 vs INT8 precision

TensorFlow 2.8, TensorRT 8.4–EA

* See Table 7: https://arxiv.org/pdf/2004.09602.pdfps://arxiv.org/pdf/2004.09602.pdf

https://arxiv.org/pdf/2004.09602.pdf

17

LATENCY
Evaluating models in FP32 vs INT8 precision

TensorFlow 2.8, TensorRT 8.4–EA

16x14x 11x 10x19x17x 11x 13x

18

CONCLUSION

Quantization-Aware Training provides an alternative to deploy deep neural networks in lower precision.

QAT models might be less prone to accuracy drop during inference compared to PTQ models due to model-
parameters fine-tuning.

We demonstrated an end-to-end QAT workflow from TensorFlow to TensorRT deployment via ONNX. TF2ONNX
enables converting TF models into ONNX graphs which is then optimized by TensorRT.

Our experiments with ResNet models showed that the INT8 accuracy is on par with the FP32 baseline accuracy and
that QAT latency is on par with PTQ

THANK YOU!

