AMD

QONNX: A proposal for representing
arbitrary-precision quantized NNs in ONNX wFINN

Alessandro Pappalardo, Yaman Umuroglu hils 4 ml

with FastML/hls4ml collaborators:
Hendrik Borras, Nhan Tran, Javier Duarte, Jovan Mitrevski, Sioni Summers, Vladimir Loncatr, et al.

[AMD Official Use Only]

Few-bit Quantized DNNs Work Well for Many Tasks

Share pa rameters

‘—w llt

{ Share parameters !

payauuo) Ajing

h When & where do few- b|t QNNs make sense?
* Need highly optimized deployment
 Throughput, latency, power constraints

n (2/3-bit)

Object Detectiol

2004.03021]

[Liu et al, arXiv:20
Not covered here due to time constraints:

== * HOW to train accurate few-bit QNNs with quantization-aware training

Basics of uniform quantization
% B ‘_:-‘;ﬁ:_f_ ‘1 u l/\/V\/\f\b,p’| ,['I""‘ !'H' Hﬁ, rv’\/\/\/

‘f‘“'xh {\/\/\) '\‘””"‘H'M
”U‘u' ‘-nnllevWUU

Modulation Classification (2-bit)

Image Classification (1- to 4-bit)

[Zhang et al, arXiv:1807.10029]

[Tridgell et al, FPT'19]

© Copyright 2022 AMD

AMDZ

[AMD Official Use Only]

Uniform affine quantization

Define the uniform affine quantization function as:

X
y = quantize(x) = clamp(round (g + z), Ymin Ymax)

Define the uniform affine dequantization function as:

u = dequantize(y) = (y —z) *s

Where s is the scale/resolution, z the zero-point, y,,,in, Ymax depend on the bit-width and signedness.
Then the fake quantization function is:

u = dequantize (quantize(x))

Maps floating-point value x to a floating point approximation u.
At inference time can be mapped to integer operations.

’ © Copyright 2022 AMD AMDZ\

[AMD Official Use Only]

Current quantization formats in ONNX

« QDQ for fake-quantization.

« QLinear operators for fused quantized ops.

* QLinear can be output of QDQ + fusion
transforms.

 Limited to 8b quantization and 8b/32b
dequantization.

x (16x8x1x1)
y_scale = 0.00007847...
y_zero_point = 0

1x8x10x10

Quantizelinear

y_scale = 0.0078125
y_zero_point = 0

x_scale = 0.0078125
x_zero_point = 0

y_scale = 0.00276980...
y_zero_point = 0

elinear

© Copyright 2022 AMD

QLinear ops

1x8x10x10

Quantizelinear

y_scale = 0.0078125
y_zero_point = 0

QLinearConv

x_scale = 0.0078125
¥_zero_point =0

w {16x8x1x1}
w_scale = 0.00007847...
w_zero_point = 0
y_scale = 0.00276980...
y_zero_point =0

B {16}

Dequantizelinear

x_scale = 0.00276980..
x_zero_point = 0

1x16x10x10

AMDZ

[AMD Official Use Only]

Extending ONNX quantization formats with Clip

. QCDQ for modelling <= 8b fake-quantization. 4b QCDQ 4b QLinear w/ Clip
 Clip integer output of QuantizeLinear.

 Clip integer range implies lower bit width.

* Runs correctly on existing toolchains/backends.

- Updated backends can take advantage of extra
acceleration < 8b.

* Qlinear w/ Clip can be output of QCDQ + fusion
transforms.

 Limited to a precision <= 8b .
 Limited to a layer-wise precision.

« Support in the next
release of the Brevitas PyTorch quantization lib

’ © Copyright 2022 AMD AMDZ\

https://github.com/Xilinx/brevitas

[AMD Official Use Only]

QONNX — generalized fake-quantization dialect

- Set of custom ONNX ops performing arbitrary precision .
fake quantization. inp.1

« Quant node - general uniform affine quantization
Takes as inputs the value to quantize, scale, zero-point, bit-width
Supports different types of rounding

- BipolarQuant node - bipolar (-1,+1) binary quantization

0 (16x8x1x1)
1 =0.00142383...
2=0

3=4

1x8x10x10

- Supported as export format in the Brevitas quantization
library

1= 0.04433923...
2=0
3=4

i © Copyright 2022 AMD AMDZ\

https://github.com/Xilinx/brevitas

[AMD Official Use Only]

Open-Source QONNX Repositories Available Today

Python Toolkit

Utilities for executing, optimizing and transforming
QONNX models

« execution of custom QONNX nodes
* shape inference

- data layout conversion (NCHW -> NHWC)

* general-purpose optimizers

» const folding, batchnorm-to-affine, reordering...
framework for defining Python-based optimizers

L

fastmachinelearning/gonnx

© Copyright 2022 AMD

Accuracy [%]

L I

Pretrained few-bit QONNX models

ImageNet

CIFAR-10

[oe]
(%))

Model Zoo

o]
o

i WeTghl bns

- MobiletNet- w4a4.

~l
)]

~
(=]

(=]
9]

<o}
(=]
L

CNV-w2a2
CNV-wia2

CNV-wi1ai

98 T T T

©1rCc-w2a2

©TFC-wia2
[@TFC-wiai

BOPs: Precision-scaled MACs per inference

fastmachinelearning/QONNX_model_zoo

AMDZ

[AMD Official Use Only]

Conclusion

Presented two new styles for expressing sub-8-bit quantization in ONNX:

- QCDAQ (standard ops, verbose, limited to <=8-bit) and QONNX (custom ops, compact, arbitrary precision)
- See HIPEAC’22 AccML paper for more details

QONNX already adopted as output in the Brevitas PyTorch quantization library, QCDQ in the next release

QONNX Already adopted as common input format by two major FPGA NN inference frameworks
- FINN and his4ml - adopted by 100s of users and customers

QONNX being adopted by the HAWQ quantization library, QKeras->QONNX converter under construction
Open-source Python toolkit and model zoo available

Open questions
« Are the QONNX operators of interest for the broader community?
« Should they become part of the standard ONNX ops?

Interested?
Please get in touch!

l

Alessandro Pppalardo Yaman Umuroglu
alessandro.pappalardo@amd.com yaman.umuroglu@amd.com
0 AMDQ

© Copyright 2022 AMD

http://arxiv.org/abs/2206.07527

[AMD Official Use Only]

Why are sub-8-bit quantized NNs important?

Error vs Compute Cost

Float 8-bit Reduced Precision

\)

Use precision which

At minimal computational cost

Provides required accuracy

\ — N

Different
network
topologies

When & where does this make sense?
* Need highly optimized deployment
* Throughput, latency, power constraints

e

8-bit networks

X
O
X
X
L
Highly Quantized
Neural Networks
(<4b) /
Pareto frontier
10 10

COMPUTE COST

© Copyright 2022 AMD

Floating point
networks

AMDZ

