
QONNX: A proposal for representing 

arbitrary-precision quantized NNs in ONNX

Alessandro Pappalardo, Yaman Umuroglu

with FastML/hls4ml collaborators: 

Hendrik Borras, Nhan Tran, Javier Duarte, Jovan Mitrevski, Sioni Summers, Vladimir Loncar, et al.



2 |

[AMD Official Use Only]

© Copyright 2022 AMD

Few-bit Quantized DNNs Work Well for Many Tasks

Human Activity Recognition (2-bit)

[Yang et al, arXiv:1808.04228]

Object Detection (3/4-bit)

[Liu et al, arXiv:2007.06919]

Image Classification (1- to 4-bit)

[Zhang et al, arXiv:1807.10029]

Intrusion Detection (2/3-bit)

[Umuroglu et al, arXiv:2004.03021]

Modulation Classification (2-bit)

[Tridgell et al, FPT'19]

When & where do few-bit QNNs make sense?
• Need highly optimized deployment
• Throughput, latency, power constraints

Not covered here due to time constraints:
• How to train accurate few-bit QNNs with quantization-aware training
• Basics of uniform quantization



3 |

[AMD Official Use Only]

© Copyright 2022 AMD

Uniform affine quantization

• Define the uniform affine quantization function as:

• Define the uniform affine dequantization function as:

• Where s is the scale/resolution, z the zero-point, 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 depend on the bit-width and signedness.

• Then the fake quantization function is:

• Maps floating-point value x to a floating point approximation u.

• At inference time can be mapped to integer operations.

𝑦 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒 𝑥 = 𝑐𝑙𝑎𝑚𝑝(𝑟𝑜𝑢𝑛𝑑
x

s
+ z , 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥)

𝑢 = 𝑑𝑒𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒 𝑦 = 𝑦 − 𝑧 ∗ 𝑠

𝑢 = 𝑑𝑒𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒 (𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒 𝑥 )



4 |

[AMD Official Use Only]

© Copyright 2022 AMD

• QDQ for fake-quantization.

• QLinear operators for fused quantized ops.

• QLinear can be output of QDQ + fusion 

transforms.

• Limited to 8b quantization and 8b/32b 

dequantization.

QDQ QLinear ops

Current quantization formats in ONNX 



5 |

[AMD Official Use Only]

© Copyright 2022 AMD

• QCDQ for modelling <= 8b fake-quantization.

• Clip integer output of QuantizeLinear.

• Clip integer range implies lower bit width.

• Runs correctly on existing toolchains/backends.

• Updated backends can take advantage of extra 

acceleration < 8b.

• Qlinear w/ Clip can be output of QCDQ + fusion 

transforms.

• Limited to a precision <= 8b .

• Limited to a layer-wise precision.

• Support in the next 

release of the Brevitas PyTorch quantization lib

https://github.com/Xilinx/brevitas

4b QCDQ 4b QLinear w/ Clip

Extending ONNX quantization formats with Clip

https://github.com/Xilinx/brevitas


6 |

[AMD Official Use Only]

© Copyright 2022 AMD

QONNX – generalized fake-quantization dialect

• Set of custom ONNX ops performing arbitrary precision 

fake quantization.

• Quant node - general uniform affine quantization

• Takes as inputs the value to quantize, scale, zero-point, bit-width

• Supports different types of rounding

• BipolarQuant node - bipolar (-1,+1) binary quantization

• Supported as export format in the Brevitas quantization 

library https://github.com/Xilinx/brevitas

https://github.com/Xilinx/brevitas


7 |

[AMD Official Use Only]

© Copyright 2022 AMD

Open-Source QONNX Repositories Available Today

Python Toolkit

Utilities for executing, optimizing and transforming 

QONNX models

• execution of custom QONNX nodes

• shape inference

• data layout conversion (NCHW -> NHWC)

• general-purpose optimizers

• const folding, batchnorm-to-affine, reordering...

• framework for defining Python-based optimizers

Model Zoo

Pretrained few-bit QONNX models

fastmachinelearning/QONNX_model_zoofastmachinelearning/qonnx



8 |

[AMD Official Use Only]

© Copyright 2022 AMD

Conclusion

• Presented two new styles for expressing sub-8-bit quantization in ONNX:

• QCDQ (standard ops, verbose, limited to <=8-bit) and QONNX (custom ops, compact, arbitrary precision)

• See HiPEAC’22 AccML paper http://arxiv.org/abs/2206.07527 for more details

• QONNX already adopted as output in the Brevitas PyTorch quantization library, QCDQ in the next release

• QONNX Already adopted as common input format by two major FPGA NN inference frameworks

• FINN and hls4ml - adopted by 100s of users and customers

• QONNX being adopted by the HAWQ quantization library, QKeras->QONNX converter under construction

• Open-source Python toolkit and model zoo available

• Open questions

• Are the QONNX operators of interest for the broader community?

• Should they become part of the standard ONNX ops?

Alessandro Pappalardo

alessandro.pappalardo@amd.com

Yaman Umuroglu

yaman.umuroglu@amd.com

Interested? 

Please get in touch!

http://arxiv.org/abs/2206.07527




10 |

[AMD Official Use Only]

© Copyright 2022 AMD

E
R

R
O

R

COMPUTE COST

Error vs Compute Cost

Float 8-bit Reduced Precision

Why are sub-8-bit quantized NNs important?

10

Floating point 

networks

Different 

network 

topologies

8-bit networks

Highly Quantized 

Neural Networks 

(<4b)

Use precision which
• Provides required accuracy
• At minimal computational cost

Pareto frontier

When & where does this make sense?
• Need highly optimized deployment
• Throughput, latency, power constraints


