
OPERATORS SIG Michal Karzynski (Intel)

G. Ramalingam (Microsoft)



OVERVIEW

 A key part of the ONNX spec is the set of operators (aka “opsets”) that make up the spec

 Organized into domains

 ONNX domain: focus on DNN operators

 ONNX-ML domain: focus on classical ML operators

 Versioned

 The Operators SIG focuses on the definition of the “operator sets”

 Additions of new operators

 Clarification of op specs

 Updates to op specs



CHANGES SINCE LAST COMMUNITY PRESENTATION

OPSETS 16 AND 17

 New Ops/Functions:

 GridSample

 used in Spatial Transformer Networks

 LayerNormalization

 Widely used, e.g. in language models like BERT

 Signal processing (DFT, STFT, HannWindow, HammingWindow, BlackmanWindow, MelWeightMatrix)

 Used in audio models (speech-to-text, audio cleanup, audio classification)

 SequenceMap

 enables batched pre-processing, e.g. a batch of images of varying sizes for ResNet-50

 All are functions except GridSample, DFT, STFT, MelWeightMatrix.

 DFT and STFT are planned to be promoted to be functions soon.

https://arxiv.org/abs/1506.02025


CHANGES SINCE LAST COMMUNITY PRESENTATION

OPSETS 16 AND 17

 Updates to existing ops

 Support duplicate index values in scatter ops

 via reduction (add or multiple all values at an index)

 ScatterND and ScatterElements

 Add bfloat16 support (Scan, LessOrEqual, GreaterOrEqual, LeakyRelu, PRelu, Where)

 Add support for optional types (If, Loop, Identity)

 RoiAlign: adds attribute coordinate_transformation_mode to adjust half-pixel error



ONNX Roadmap:
What Next?



Key Goals

• Clear and unambiguous specification
• Improve documentation (Issue #3651)

• Compact specification
• Make it easier to implement backends, especially on new hardware
• Reduce operator surface area (of core primitive ops)

• Expressiveness
• Enable newer models, pre-processing, post-processing
• … more ops!

• Efficiency
• Need for more coarse-grained (composite) ops!

https://github.com/onnx/onnx/issues/3651


ONNX Functions

• ONNX Functions: a key enabler to meeting our goals:
• Defines the function in terms of other (core operators)

• Provides an executable specification (reduces ambiguity)

• Provides a default implementation (reducing core operator surface area)
• Less concerned about adding new function definitions to increase expressiveness

• Enable use of specialized kernels, when needed and where available, for 
efficiency



Next Steps

• Reduce existing primitive operator surface area
• Around 25-30 of existing operators can be promoted into functions (Issue #3877)

• Enable authoring ONNX functions using Python
• And automatically convert to FunctionProto (ONNX’s serialized representation)
• Easier to author
• Easier to read and understand (edge case behavior or fine details)

• and execute them in Python debuggers
• As a tool to understand the ONNX spec, not intended for production-use or perf
• To test, debug, and understand function definitions

• ONNXScript (a subset of Python)

https://github.com/onnx/onnx/issues/3877


M_SQRT1_2 = math.sqrt(0.5)

@script()

def Gelu(X):

phiX = 0.5 * (op.Erf(M_SQRT1_2 * X) + 1.0)

return X * phiXExample
ONNX

Functions
in

Python

Gelu (X) => (return_val) {

tmp = Constant <value = <Scalar Tensor [0.5]>>()

tmp_0 = Constant <value = <Scalar Tensor [0.7071067690849304]>>()

tmp_1 = Mul (tmp_0, X)

tmp_2 = Erf (tmp_1)

tmp_3 = Constant <value = <Scalar Tensor [1.0]>>()

tmp_3_4 = CastLike (tmp_3, tmp_2)

tmp_5 = Add (tmp_2, tmp_3_4)

tmp_6 = CastLike (tmp, tmp_5)

phiX = Mul (tmp_6, tmp_5)

return_val = Mul (X, phiX)

}



Another example (with control-flow)

def Dropout(data, ratio, training_mode, seed):

if (training_mode):

rand = RandomUniformLike(data, seed=seed, dtype=FLOAT)

mask = (rand >= ratio)

output = Where(mask, data, 0) / (1.0 - ratio)

else:

mask = Expand(True, Shape(data))

output = data

return (output, mask)



Enable debugging via eager-mode 



def LeakyRelu(X, alpha=0.01):

return Where(X < 0, alpha * X, X)

def HardSigmoid (X, alpha=0.2, beta=0.5):

return Max(0, Min(1, alpha * X + beta))

def Shrink(x, bias = 0.0, lambd = 0.5):

return Where(x < -lambd, x + bias,

Where(x > lambd, x - bias, 0))

def Softplus(X):

return Log(Exp(X) + 1)

def Softsign(X):

return X / (1 + Abs(X))

Example
ONNX

Functions
in

Python



THANKS FOR COMING!!!

Please Get Involved!

 Github: PRs, Issues, and Discussions

 Slack channel: https://slack.lfai.foundation and join onnx-operators

 Monthly SIG meetings (see slack channel for announcements)

https://slack.lfai.foundation/

