W O AN /0 /) A RN

‘

@ .

ORACLE

ONNX and the JVM

Adam Pocock

Machine Learning Researcher

Oracle Labs, Machine Learning Research Group
June 24, 2022

Why do we want to support ONNX on the JVM?

* MachinelLearning models are an increasinglyimportant componentin applications
* Most applications(especiallylarge business applications)are developedin non-Python languages
* Either we need to persuade all those developers to move to Python (which seems unlikely)

* Or we bring Machine Learning to them in the languages they work in like Java (or C#, JS)

e Javais one of the largest platforms for software developmentin the world, with millionsof Java developers
building software which runs companies

* We think that the ONNX community (and the wider ML community) could be buildingtools to help Java
developersintegrate ML into their applications

* |'ve spent the past few years buildingJava ML tooling, both for ONNX and other ML libraries

2 Copyright © 2022, Oracle and/orits affiliates 24/06/2022

ONNX Runtime Java API

* Developedin Oracle Labsin Spring 2019, contributed to the upstream project in December 2019
* Binariesavailableon Maven Central since June 2020 as part of ORT 1.3.1

* Used in productionin Oracle and other companies

* Goalis to providethe whole ORT C APl in Java, keep feature parity with the other APIs
e Currently missing custom allocators & I0Binding due to complexities in exposing pointers
e |f there’s something else missing, or you need those features, open an issue

* Thelava APl is a thin layer over the C APl with minimal performance impact
* Inputtensors have a zero copy path from Java-> ORT

* Outputtensors currently require a copy (but for many tasks are much smaller than inputs)

* TargetsJava8 (and runson all versions > 8), has no dependencies other than the ORT native library which is
packaged with it

3 Copyright © 2022, Oracle and/orits affiliates 24/06/2022

ONNX Runtime in Java code example ()

In [9]: // We can set also a per environment thread pool or logging here
var env = OrtEnvironment.getEnvironment();

// Sessions are configured as usual for ORT
var sessionOpts = new OrtSession.SessionOptions();
sessionOpts.setInterOpNumThreads(4);

var session = env.createSession("./external-models/pytorch cnn mnist.onnx", sessionOpts);

In [10]: // sessions expose the model metadata, inputs and outputs
System.out.println("Metadata "+session.getMetadata() + "\n");
System.out.println("Inputs "+session.getInputInfo() + "\n");
System.out.println("Outputs "+session.getOutputInfo());

Metadata OnnxModelMetadata{producerName='pytorch', graphName='torch-jit-export', domain='"', d
escription='"', version=9223372036854775807, customMetadata={}}

Inputs {input image=NodeInfo(name=input image,info=TensorInfo(javaType=FLOAT,onnxType=0NNX TE
NSOR_ELEMENT DATA TYPE FLOAT,shape=[-1, 1, 28, 28]))}

Outputs {output probs=NodelInfo(name=output probs,info=TensorInfo(javaType=FLOAT,onnxType=0NNX
_TENSOR_ELEMENT DATA TYPE FLOAT,shape=[-1, 10]))}

4 Copyright © 2022, Oracle and/orits affiliates 24/06/2022

ONNX Runtime in Java code example (ll)

// Allocate a buffer to hold 28+*28 4 byte floats using the system endian

5

In [12]:
var buffer = ByteBuffer.allocateDirect(28+*28+%4).order(ByteOrder.nativeOrder()).asFloatBuffer();
buffer.put(mnistExampleArr);
buffer.rewind();

Out[l2]: java.nio.DirectFloatBufferU[pos=0 1lim=784 cap=784]

In [13]: // Make a tensor, cleaning it up once the try completes

try (var inputTensor = OnnxTensor.createTensor(env,buffer,new long[]{1,1,28,28})) {

// Run the model
try (var result =
// Inspect the results

var output = result.get(0);

session.run(Map.of("input image",inputTensor))) {

System.out.println(Arrays.deepToString((float[][])output.getValue()));

}

[[-270.3646, -646.535,
-646.535]]

-646.535, -612.41016, -646.535, 0.0, -215.17352,

24/06/2022

Copyright © 2022, Oracle and/orits affiliates

-536.0042,

-646.535,

Memory management

* Much of the work in this API is shuffling memory between the Java heap and the native heap
 This needsto be as efficient as possible to maximise throughput & minimize latency

e AllJava objects which hold native objects must be closed by users otherwise they leak memory

* Thisistypicallydone with a try-with-resources statement, and in the future we will add a safety net to
ensure memory is freed as the Java objects are GC'd

We recommend users use NIO direct byte buffers, which allow a zero copy pass through from Java to native
code

* The buffer lifetime needs to be managed so it’slonger than a single call
e Buffers can be reused for same size inputs reducing allocation

e Java’sexisting multidimensional arraysare a poor abstraction for ML as they are not flat and require pointer
chasing for 2D or higher structures

6 Copyright © 2022, Oracle and/orits affiliates 24/06/2022

Future work on ONNX Runtime’s Java API

* Movingto a modern version of Javaas Java 8 is 8 years old

e Featureslike the JEP 424 Foreign Function & Memory interface make things faster and safer by allowing
easier cleanup of native memory and autogeneratingthe nativeinterface

* There have been many language & runtime improvements which should improve the code

 We're interested in adding support for single op execution and training as these provide functionality hard to
access elsewhere on the JVM

e Continued build out to match the ORT C API
 New EPs, new methods, better support for memory pinning with I0Binding

e Contributionsare welcome — https://github.com/microsoft/onnxruntime

7 Copyright © 2022, Oracle and/orits affiliates 24/06/2022

Writing ONNX models from Java

* Inference is an importantworkload but we’d also like to convert models trained in Java to ONNX

* Writing the protobufdirectly is possible, but it’s tricky to write well formed ONNX models
e Bare protobufs have no graph validation for cycles or checks that node inputs and outputs line up

* We developedand open sourced a small library for generating ONNX models in Java

* |t provides some type safety, graph correctness checking, attribute validation, export of Java arrays as
initializersor attributes, and a fluent interface

* |t’s Apache 2.0 licensed, and livesinside the Tribuo repository —
https://github.com/oracle/tribuo/tree/main/Util/ONNXExport

e Builtto support converting Tribuo models to ONNX, but only depends on protobufso can be used without
Tribuo, and also targets Java 8 (but works on all versions > 8)

8 Copyright © 2022, Oracle and/orits affiliates 24/06/2022

https://github.com/oracle/tribuo/tree/main/Util/ONNXExport

Writing ONNX models from Java

Code examples

ONNXContext onnx = new ONNXContext();

ONNXPlaceholder input = onnx.floatInput(featureIDMap.size());
ONNXPlaceholder output = onnx.floatOutput(outputIDInfo.size());

ONNXInitializer weightTensor = onnx.floatTensor("liblinear weights",
List.of (numFeatures, numLabels), fb -> {

- for (int i = 0; i < weights.length - numLabels; i++) {
fb.put(weights[i]);
}
)i
ONNXInitializer biasTensor = onnx.floatTensor("liblinear biases",
List.of (numLabels), fb -> {
8 usages for (int i = numFeatures * numLabels; i < weights.length; i++) {
GEMM({ value: "Gemm", numinputs: 2, numOptionalinputs: 1, numOutputs: 1, Arrays.aslist(fb.put(weights[i]);
new ONNXAttribute(name: "alpha", OnnxML.AttributeProto.AttributeType.FLOAT, mandatory: false), }
new ONNXAttribute(name: "beta", OnnxMLl.AttributeProto.AttributeType.FLOAT, mandatory: false), });
new ONNXAttribute(name: "transA", OnnxML.AttributeProto.AttributeType.INT, mandatory: false),
new ONNXAttribute(name: "transB", OnnxML.AttributeProto.AttributeType.INT, mandatory: false) ONNXNode gemm = input.apply(ONNXOperators.GEMM, List.of(weightTensor, biasTensor));

gemm. apply(ONNXOperators.SOFTMAX, Map.of("axis", 1)).assignTo(output);

GraphProto proto = onnx.buildGraph();

9 Copyright © 2022, Oracle and/orits affiliates 24/06/2022

Future work on writing ONNX models in Java

* We currently support a subset of opset 13 and ONNX-ML v1, those used to export Tribuo models, we’d like to
expand this to full coverage of ONNX ops

* It’s easy to expand the operatorenum to fill out the set
* Inthe future we may look at autogeneratingthe enum (or op classes) from the op definitions

e Abstract over opsets to allow users to export models targeting different opsets
* Thisis straightforward to do, but we haven’t needed it yet

* Also enables users to integrate custom ops into their models

* Integrate provenanceand metadatainto converted models

e Tribuo exports its detailed model provenanceas a field in the ONNX metadata, but this isn’t standardised,
we’re interested in collaborating with the ONNX community on better solutions

* Contributionsare welcome — https://github.com/oracle/tribuo

10 Copyright © 2022, Oracle and/orits affiliates 24/06/2022

https://github.com/oracle/tribuo

Questions?

11 Copyright © 2022, Oracle and/orits affiliates

