
Alexander Zhang, Topaz Labs

alexander.zhang@topazlabs.com

Deploying on Desktop
with ONNX



Gigapixel AI

- Photo upscaling software for 
Windows and MacOS

- Plugins for popular photo 
editing applications

- Automatically maximizes 
processing speed on a 
variety of desktop hardware

- >100 new or greatly 
improved models across all 
apps since 2018



Desktop deployment

- Integrates into existing photography and 
videography workflows

- Avoids many concerns about internet bandwidth, 
privacy, etc.

- Little control over system configuration

- May need to support old operating systems and 
constrained hardware

- Should scale with latest GPUs and drivers 

- Usually running alongside other applications



Training Inference



Model Conversion Challenges
- Must be aware of feature support in each 

inference library

- Libraries may desire different input dimensions, 
channel order, etc.

- Operators may be interpreted differently

- Output may change slightly but unpredictably 
after conversion

- Variety of hardware may be required for 
conversion and testing converted model

Image from Oleksandr Savsunenko



Model Conversion Process

- Verify conversions are possible before training

- Create different intermediate ONNX models 
for each inference library

- Make ONNX as unambiguous as possible, 
potentially avoid troublesome operators

- Compare before and after conversion model 
outputs both numerically and visually

- Setup automated tools for running pipeline on 
different machines



Why use your own inference wrapper?

- Have tried using same OpenGL or ONNX Runtime code on 
all hardware in the past

- Hardware specific tuning and optimization can make a big 
difference in performance

- Avoid doing conversion or compilation work at load time

- More quickly understand and incorporate your specific fixes 
and workarounds

- Better control over performance characteristics and feature 
priorities



Inference Pipeline Tasks

- Should determine library compatibility before loading 
to minimize required downloads and setup time

- Select fastest of multiple inference libraries and 
make use of different available GPUs, but fallback to 
different libraries or devices on error

- Efficiently process images of arbitrary size both as 
previews and for batch output

- Smooth over differences between libraries in image 
format, memory allocation, device selection, etc.

Setup Library

Load Model

Preprocess 
Inputs

Run Inference

Postprocess 
Outputs



Inference Pipeline

- Describe system requirements, input names and 
dimensions, file download URL etc. for each 
inference library in a JSON blob

- Prefer device with most RAM, then compatible 
inference library most specific to that device; 
reselect after library-specific errors

- Split images into blocks that can be batched or 
dispatched to different devices in parallel, allow 
models to customize per-block processing

Image from Ievgen Khvedchenia



Future Work

- More quickly add support for new operators and architectures

- Reduce time spent on converting models and testing on different 
hardware

- Manage proliferation of model files for different libraries, hardware, 
block sizes, etc.

- Perform more pre/post processing pipeline on GPU without extra 
PCIe transfers.

- Further reduce loading time when chaining multiple large models per 
image



Alexander Zhang, Topaz Labs

alexander.zhang@topazlabs.com

Thank you!


