
Pranav Marathe

Polygraphy and ONNX-
GraphSurgeon

2

Background

- I work on the TensorRT team @ NVIDIA[1]

2[1] Just in case the title slide didn’t give that away

- ONNX is our primary import path, so we’ve developed lots of tooling for

it

- This talk will cover two open-source tools:

- ONNX-GraphSurgeon: Create and modify ONNX models

- Polygraphy: Inspect, modify, and debug ONNX models

3

What is ONNX-GraphSurgeon*?

- Python-based IR for bipartite DAGs consisting of nodes and tensors

- Virtually any modifications are possible using a simple Python API

- Provides some additional conveniences: constant folding, topological

sorting, dead layer removal

Source code and examples available here

[*] Not medically licensed 3

https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon

4

The IR

- In addition to the fields above, inputs/outputs are also tracked:

- For tensors, inputs/outputs are lists of Nodes that consume/produce them

- For nodes, inputs/outputs are lists of Tensors

- Makes graph traversal easy

- Editing inputs/outputs allows you to restructure the graph

- Everything shown here can be freely edited or constructed manually

An Example

4

Tensor:
name: "input"

dtype: np.float32

shape: (1, 3, 28, 28)

Node:
op: "LeakyRelu"

name: "node_0"

attrs: {"alpha": 0.01}

Tensor:
name: "input"

dtype: np.float32

shape: (1, 3, 28, 28)

5

Creating A Model The Easy Way

- Use Graph.register() to add methods to Graph

- Methods can be arbitrarily complex and can access the graph via self

- Totally reusable

Registering Ops

5

@gs.Graph.register()

def leaky_relu(self, inp, alpha=0.01):

out = self.layer(

op="LeakyRelu",

inputs=[inp],

outputs=["leaky_relu_out"],

attrs={"alpha": alpha},

)[0]

out.dtype = inp.dtype

return out

6

Creating A Model The Easy Way

- Registered ops can be used directly from graph instances:

Using Registered Ops

6

Build a graph that computes `out = leaky_relu(input)`

graph = gs.Graph(inputs=[gs.Variable(name="input", dtype=np.float32, shape=(1, 3, 28, 28))])

out = graph.leaky_relu(graph.inputs[0])

graph.outputs = [out]

onnx_model = gs.export_onnx(graph)

7

What is Polygraphy?

- Python API and Command-line Toolkit for debugging DL models

- Does lots of different things, but we’ll focus on ONNX tooling

Source code and examples available here

A bird? A plane?

7

https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy

8

Before We Begin
polygraphy run

8

- run lets you run inference with backends, like ONNX-Runtime, and

compare results

$ polygraphy run model.onnx --onnxrt
[I] onnxrt-runner | Activating and starting inference
[I] Creating ONNX-Runtime Inference Session with providers: ['CPUExecutionProvider']
[I] onnxrt-runner

---- Inference Input(s) ----
{input [dtype=float32, shape=(1, 3, 28, 28)]}

[I] onnxrt-runner
---- Inference Output(s) ----
{leaky_relu_out_0 [dtype=float32, shape=(1, 3, 28, 28)]}

[I] onnxrt-runner | Completed 1 iteration(s) in 0.07 ms | Average inference time: 0.07 ms.
[I] PASSED | Command: polygraphy run model.onnx --onnxrt

9

Inspecting Models

- inspect model shows us a text representation of the model

- Display can be configured to show: Initializers, Nodes, and/or Attributes

Who needs GUIs?[1]

9[1] If you need a GUI, I highly recommend Netron

$ polygraphy inspect model model.onnx --show layers attrs weights
[I] ==== ONNX Model ====

Name: onnx_graphsurgeon_graph | ONNX Opset: 11

---- 1 Graph Input(s) ----
{input [dtype=float32, shape=(1, 3, 28, 28)]}

---- 1 Graph Output(s) ----
{leaky_relu_out_0 [dtype=float32, shape=()]}

---- 0 Initializer(s) ----
{}

---- 1 Node(s) ----

Node 0 | onnx_graphsurgeon_node_1 [Op: LeakyRelu]
{input [dtype=float32, shape=(1, 3, 28, 28)]}

-> {leaky_relu_out_0 [dtype=float32, shape=()]}
---- Attributes ----
onnx_graphsurgeon_node_1.alpha = 0.009999999776482582

https://github.com/lutzroeder/netron

10

Simplifying Models

10

- surgeon sanitize[1] allows you to fold constants in the model

[1] Side effects include weight loss

$ polygraphy surgeon sanitize model.onnx -o folded.onnx --fold-constants
[I] Folding Constants | Pass 1
[I] Total Nodes | Original: 8, After Folding: 1 | 7 Nodes Folded
[I] Folding Constants | Pass 2
[I] Total Nodes | Original: 1, After Folding: 1 | 0 Nodes Folded
[I] Saving ONNX model to: folded.onnx

- Similar to ONNX-Simplifier, but a few key differences:

- Preserves dynamic shapes while simplifying shape computations

- Highly fault-tolerant due to partitioning

- Special optimizations like If lowering and Cast elision

https://github.com/daquexian/onnx-simplifier

11

Simplifying Models
Eliminates 99.9% of unnecessary nodes and tensors[1]

11[1] These statements have not been evaluated by the FDA

12

Extracting Subgraphs

12

- surgeon extract allows you to extract subgraphs from a model

- Use inspect model or Netron to figure out input/output tensors

- For inputs, need to provide shapes and data types

- For outputs, need to provide data types

- Format is: <tensor_name>:<shape>:[<dtype>]

- For example: input0:[1,3,224,224]:float32

- auto indicates shapes/data types should be automatically determined

13

Extracting Subgraphs
An Example

13

- Assume we’re extracting ‘LeakyReLU’ - we can see the input/output

tensor names in Netron

- We’ll use those names and use auto for shapes and data types:

$ polygraphy surgeon extract model.onnx -o subgraph.onnx \
--inputs identity_out_0:auto:auto \
--outputs leaky_relu_out_1:auto

14

Model Bisection

- Like git bisect, but for ONNX models!

- Assuming we start with a (failing) model.onnx, the algorithm is:

1. Remove N nodes from the model and generate a new model

2. If new model fails, goto 1

3. If new model passes, add back M nodes, generate a new model, and goto 2

4. Repeat until smallest failing model is found

- ‘fail’/’pass’ intentionally vague - bisection works for any type of failure

14

15

Model Bisection: An Example

- Imagine we have the following ONNX model which gives us an error when we run it:

Setting The Stage

15

$ polygraphy run model.onnx --onnxrt
[E:onnxruntime:, sequential_executor.cc:339 Execute] Non-zero status code returned while
running Reshape node. Name:'onnx_graphsurgeon_node_5' Status Message:
/onnxruntime_src/onnxruntime/core/providers/cpu/tensor/reshape_helper.h:41
onnxruntime::ReshapeHelper::ReshapeHelper(const onnxruntime::TensorShape&, std::vector<long
int>&, bool) gsl::narrow_cast<int64_t>(input_shape.Size()) == size was false. The input
tensor cannot be reshaped to the requested shape. Input shape:{1,3,784}, requested
shape:{1,2351}

[1] Reading the error mes s age would also make this easy to debug, but that doesn’t make for a good ex ample

- Reducing the model to something smaller can make this easy to debug[1]

16

Model Bisection: An Example

- In interactive mode, debug reduce will generate models successively and ask us

whether each one passes or fails.

- We’ll run each of these models using run and report what we see

- Our debug reduce command is quite simple:

Interactive Mode

16

$ polygraphy debug reduce model.onnx -o reduced.onnx

- Note: Interactive mode may not be available as of this talk, but will be public very

soon!

17 17

http://drive.google.com/file/d/1FUa0o_xRcu8_pQPQeJKW2zVH1g27T7iH/view

18

Model Bisection: An Example

- Here’s what we’re left with:

Interactive Mode: Results

18

- Now we can clearly see that the Reshape is invalid!

19

Model Bisection: An Example

- We can do the same thing in an automated fashion

- Instead of running a command ourselves, we tell debug reduce which command to

run:

Automatic Mode

19

$ polygraphy debug reduce model.onnx -o reduced.onnx \
--check polygraphy run polygraphy_debug.onnx --onnxrt

- The resulting model is exactly the same as before

20

Contact Information

Email: pranavm@nvidia.com

20

21

Questions?

