<3

NVIDIA.

Polygraphy and ONNX- .
GraphSurgeon -~

Pranav Marathe

_«r

Background

- |l work on the TensorRT team @

- ONNX is our primary import path, so we’ve developed lots of tooling for
it
- This talk will cover two open-source tools:
ONNX-GraphSurgeon: Create and modify ONNX models

Polygraphy: Inspect, modify, and debug ONNX models

[1] Just in case the title slide didn’t give that away

What is ONNX-GraphSurgeon™

- Python-based IR for bipartite DAGs consisting of nodes and tensors
Virtually any modifications are possible using a simple Python API

Provides some additional conveniences: constant folding, topological
sorting, dead layer removal

Source code and examples available

[*] Not medically licensed

https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon

The IR

An Example

Tensor: Node: Tensor:
: "input" : "LeakyRelu" : "input”

: np. : "node_0" : np.
: (1, 3, 28, 28) : {"alpha": @.01} : (1, 3, 28, 28)

- In addition to the fields above, inputs/outputs are also tracked:
- For tensors, inputs/outputs are lists of Nodes that consume/produce them
- For nodes, inputs/outputs are lists of Tensors
- Makes graph traversal easy

- Editing inputs/outputs allows you to restructure the graph

- Everything shown here can be freely edited or constructed manually

Creating A Model The Easy Way

Registering Ops

- Use Graph.register() to add methods to Graph
- Methods can be arbitrarily complex and can access the graph viaself

- Totally reusable

@gs.Graph.register()

def leaky relu(self,
= self.layer(
="LeakyRelu",
=[inp],
=["leaky_relu_out"],
={"alpha": JFe
)[e]
.dtype = .dtype

return

Creating A Model The Easy Way

Using Registered Ops

Registered ops can be used directly from graph instances:

gs .Graph (=[gs.Variable(="input", . (1, 3, 28, 28))])

.leaky relu(. [0])

= gs.export_onnx(

What is Polygraphy?

Python APl and Command-line Toolkit for debugging DL models
Does lots of different things, but we’ll focus on ONNX tooling

Source code and examples available

https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy

Before We Begin

polygraphy run

- run lets you run inference with backends, like ONNX-Runtime, and
compare results

$ polygraphy run model.onnx
[I] onnxrt-runner | Activating and starting inference

[I] Creating ONNX-Runtime Inference Session with providers: ['CPUExecutionProvider']
[I] onnxrt-runner

---- Inference Input(s) ----
{input [dtype=float32, shape=(1, 3, 28, 28)]}

[I] onnxrt-runner

---- Inference Output(s) ----

{leaky_relu out_© [dtype=float32, shape=(1, 3, 28, 28)]}
[I] onnxrt-runner | Completed 1 iteration(s) in .07 ms | Average inference time: 0.07 ms.
[I] PASSED | Command: polygraphy run model.onnx --onnxrt

Inspecting Models

Who needs GUIs?(']
- inspect model shows us a text representation of the model

- Display can be configured to show: Initializers, Nodes, and/or Attributes

$ polygraphy inspect model model.onnx
[I] ==== ONNX Model ====
Name: onnx_graphsurgeon_graph | ONNX Opset: 11

---- 1 Graph Input(s) ----
{input [dtype=float32, shape=(1, 3, 28, 28)]}

---- 1 Graph Output(s) ----
{leaky_relu out_© [dtype=float32, shape=()]}

---- @ Initializer(s) ----

{3

---- 1 Node(s) ----
Node © | onnx_graphsurgeon node 1 [Op: LeakyRelu]
{input [dtype=float32, shape=(1, 3, 28, 28)]}
-> {leaky_relu out_© [dtype=float32, shape=()]}
---- Attributes ----
onnx_graphsurgeon_node_1.alpha = 0.009999999776482582

[1] If youneed a GUI, | highly recommend Netron

https://github.com/lutzroeder/netron

Simplifying Models

surgeon sanitizel'lallows you to fold constants in the model

Similar to ONNX-Simplifier, but a few key differences:

Preserves dynamic shapes while simplifying shape computations

- Highly fault-tolerant due to partitioning

Special optimizations like If lowering and Cast elision

$ polygraphy surgeon sanitize model.onnx -o folded.onnx
[I] Folding Constants | Pass 1

[I] Total Nodes | Original: 8, After Folding: 1 |

7 Nodes Folded
[I] Folding Constants | Pass 2

[I] Total Nodes | Original: 1, After Folding: 1 |

© Nodes Folded
[I] Saving ONNX model to: folded.onnx

[1] Side effects include weight loss

10

https://github.com/daquexian/onnx-simplifier

Simplifying Models

Eliminates 99. 9% of unnecessary nodes and tensors!']

inpuk
Gather

Concat

Reshape

shape

Flattened

Concat

Reshape

flattened

[1] These statements have not been evaluated by the FDA

11

Extracting Subgraphs

surgeon extract allows you to extract subgraphs from a model
Use inspect model or Netron to figure out input/output tensors
For inputs, need to provide shapes and data types
For outputs, need to provide data types
Format is: <tensor_name>:<shape>:[<dtype>]

For example: input@:[1,3,224,224]:float32

auto indicates shapes/data types should be automatically determined

12

input

Extracting Subgraphs

An Example

Identity LeakyRelu Identity

Assume we’re extracting ‘LeakyRelLU’ - we can see the input/output
tensor names in Netron

We’ll use those names and use auto for shapes and data types:

$ polygraphy surgeon extract model.onnx

\

--outputs leaky_relu_out_1:auto

identity_out_0 LeakyRelu leaky relu_out_1

identity_out_

—.

£

13

Model Bisection

Like git bisect, but for ONNX models!
Assuming we start with a (failing) model.onnx, the algorithm is:
1. Remove N nodes from the model and generate a new model
2. If new model fails, goto 1
3. If new model passes, add back M nodes, generate a new model, and goto 2
4. Repeat until smallest failing model is found

‘fail’ /’pass’ intentionally vague - bisection works for any type of failure

14

Model Bisection: An Example

Setting The Stage

- Imagine we have the following ONNX model which givesus an error when we run it:

: Reshape Reshape
input reshape_out 7

shape hape (i shape

$ polygraphy run model.onnx

[E:onnxruntime:, sequential_executor.cc:339 Execute] Non-zero status code returned while
running Reshape node. Name:'onnx_graphsurgeon_node_5' Status Message:
/onnxruntime_src/onnxruntime/core/providers/cpu/tensor/reshape_helper.h:41

onnxruntime: :ReshapeHelper::ReshapeHelper(const onnxruntime::TensorShape&, std: :vector<long
int>&, bool) gsl::narrow_cast<int64_t>(input_shape.Size()) == size was false. The input
tensor cannot be reshaped to the requested shape. Input shape:{1,3,784}, requested
shape:{1,2351}

- Reducing the model to something smaller can make this easy to debugl[']

[1] Reading the error message would also make this easy to debug, but that doesn’t make for a good example

15

Model Bisection: An Example

Interactive Mode

In interactive mode, debug reduce will generate models successively and ask us
whether each one passes or fails.

We’ll run each of these models using run and report what we see

Our debug reduce command is quite simple:

$ polygraphy debug reduce model.onnx -o reduced.onnx

Note: Interactive mode may not be available as of this talk, but will be public very
soon!

16

polygraphy debug reduce model.onnx -o reduced.onnx polygraphy run polygraphy_debug.onnx --onnxrt

http://drive.google.com/file/d/1FUa0o_xRcu8_pQPQeJKW2zVH1g27T7iH/view

Model Bisection: An Example

Interactive Mode: Results

Here’s what we’re left with:

reshape_out_1 reshape_out_4

Now we can clearly see that the Reshape is invalid!

18

Model Bisection: An Example

Automatic Mode
We can do the same thing in an automated fashion

Instead of running a command ourselves, we tell debug reduce which command to
run:

$ polygraphy debug reduce model.onnx -o reduced.onnx \

polygraphy run polygraphy_debug.onnx --onnxrt

The resulting model is exactly the same as before

19

Contact Information

Email: pranavm@nvidia.com

20

Questions?

