Meeting of the >
LF Al & Data Technlcal Adwsory Councll

(TAC)

June 29, 2023

CILFAl & DATA

Antitrust Policy

» Linux Foundation meetings involve participation by industry competitors, and it is the
Intention of the Linux Foundation to conduct all of its activities in accordance with
applicable antitrust and competition laws. It is therefore extremely important that
attendees adhere to meeting agendas, and be aware of, and not participate in, any
activities that are prohibited under applicable US state, federal or foreign antitrust
and competition laws.

» Examples of types of actions that are prohibited at Linux Foundation meetings and in
connection with Linux Foundation activities are described in the Linux Foundation
Antitrust Policy available at http://www.linuxfoundation.org/antitrust-policy. If you
have questions about these matters, please contact your company counsel, or if you
are a member of the Linux Foundation, feel free to contact Andrew Updegrove of the
firm of Gesmer Undergone LLP, which provides legal counsel to the Linux
Foundation.

LILF Al & DATA

29JUN2023

Recording of Calls

Reminder:

TAC calls are recorded and available for viewing on the TAC Wik

CLILF Al & DATA

29JUN2023

https://wiki.lfai.foundation/pages/viewpage.action?pageId=7733341TechnicalAdvisoryCouncil(TAC)-MeetingRecordingsandMinutes

Reminder: LF Al & Data Useful Links

> Web site: [faidata.foundation

> Wiki: wiki.lfaidata.foundation

> GitHub: github.com/Ifaidata

> Landscape: https://landscape.lfaidata.foundation or
https://l.Ifaidata.foundation

> Malil Lists: https://lists.lfaidata.foundation

> Slack: https://slack.lfaidata.foundation

> Youtube: https://www.youtube.com/channel/lUCfasaegXJBCAJMNO9HCcHIbA

> LF Al Logos: https://github.com/Ifaidata/artwork/tree/master/lfaidata

> LF Al Presentation Template: https://drive.google.com/file/d/1eiIDNIJVXCqSZHTA4ZK -

czASIz2GTBRZk2/view?usp=sharing

> Events Page on LF Al Website: https://Ifaidata.foundation/events/

> Events Calendar on LF Al Wiki (subscribe available):
https://wiki.lfaidata.foundation/pages/viewpage.action?pageld=12091544

> Event Wiki Pages:

https://wiki.lfaidata.foundation/display/DL/LF+Al+Data+Foundation+Events
CILF Al & DATA

29JUN2023

https://lfaidata.foundation/
https://wiki.lfaidata.foundation/
https://github.com/lfaidata
https://landscape.lfaidata.foundation
https://l.lfaidata.foundation
https://lists.lfaidata.foundation/g/main/subgroups
https://slack.lfaidata.foundation
https://www.youtube.com/channel/UCfasaeqXJBCAJMNO9HcHfbA
https://github.com/lfaidata/artwork/tree/master/lfaidata
https://drive.google.com/file/d/1eiDNJvXCqSZHT4Zk_-czASlz2GTBRZk2/view?usp=sharing
https://lfaidata.foundation/events/
https://wiki.lfaidata.foundation/pages/viewpage.action?pageId=12091544
https://wiki.lfaidata.foundation/display/DL/LF+AI+Data+Foundation+Events

Agenda

> Roll Call (1 mins)

> Approval of Minutes from previous meeting (2 mins)
» Recommenders from Microsoft (40 minutes)

» Open Discussion

LILF Al & DATA

29JUN2023

TAC Voting Members - Please note

Please ensure that you do the following to facilitate smooth
procedural quorum and voting processes:

. Change your Zoom display name to include your First/Last
Name, Company/Project Represented
. example: Nancy Rausch, SAS
. State your First/Last Name and Company/Project when
submitting a motion
. example: First motion, Nancy Rausch/SAS

LILF Al & DATA

29JUN2023

TAC Voting Members - Please note

» TAC members must attend consistently to maintain
their voting status

» After 2 absences voting members will lose voting
privileges

» Voting privileges will only be reinstated after attending
2 meetings in a row

LILF Al & DATA

29JUN2023

TAC
Voting

Members

Note: we still need a few
designated backups
specified on wiki

CLILF Al & DATA

Member Company
or Graduated
Project

4paradigm
Baidu
Ericsson
Huawei
Mokia
OPRO

SAS

ZTE

Adversarial

Robustness Toolbox

Project

Angel Project

Egeria Project

Flyte Project

Horovod Project

Milvus Project

OMMX Project

Pyro Project

Membership Level
or Project Level

Premier
Premier
Premier
Premier
Premier
Premier
Premier
Premier

Graduated Technical
Project

Graduated Technical
Project

Graduated Technical
Project

Graduated Technical
Project

Graduated Technical
Project

Graduated Technical
Project

Graduated Technical
Project

Graduated Technical
Project

Voting Eligibility

Voting Member
Voting Member
Voting Member
Voting Member
Voting Member
“oting Member
Voting Member
Voting Member

Voting Member

“oting Member

Voting Member

Voting Member

Voting Member

Voting Member

“oting Member

Voting Member

Country

China
China
Sweden
China
Finland
China
Usa
China

UsA

China

UK

UsA

U5A

China

UsA

UsA

TAC Representative

Zhangyi Tan

Jun Zhang

Rani Yadav-Ranjar
Howard (Huang Zhipeng)
@ Michael Rooke

Jimmy (Hongrmin Xu)

*Mancy Rausch

Wei Meng

Beat Buesser

Jun Yac

Mandy Chessel

Ketan Urnare

Travis Addair

Xiaofan Luan

Alexandre Eichenberger

Fritz Obermeyer

Designated TAC Representative Alternates

Daxiang Dong, Yanjun Ma

Charlotte (Xiaoman Hu), Lean (Hui Wang)

@ lonne Soininen

Liz Mcintosh
Liya Yuan

Eevin Eykchalt

Nigel Jones, David Radley, Maryna
Strelchuk, Ljupcho Palashevskd, Chris Grote

Jun Gu

Andreas Fehlner, Prasanth Pulavarthi, Jimn Spohrer

https://wiki.lfaidata.foundation/pages/viewpage.action?pageId=7733341

Minutes approval

LILF Al & DATA

29JUN2023

Approval of June 15, 2023 Minutes

Draft minutes from the June 15 TAC call were previously distributed to the TAC
members via the mailing list

Proposed Resolution:

» That the minutes of the June 15 meeting of the Technical Advisory Council
of the LF Al & Data Foundation are hereby approved.

LILF Al & DATA

29JUN2023

MQOOO“Qu 0000000000000
: WQQCQOOOOM 0000000000000
. 900000000

PR
000000000000 0000000000 y L vt
P DPRIEEE
. " Al st

ders @ LF Al

i 2" ')
: 0 000000° g

Recommendations everywhere

Qinteret \ A
@ | NETFLIX Aicrosoft
| THOMSON
REUTERS
amazon 0

. ' g ® ~ Microsoft traveloka™
YOU T“he b Blﬂg V ynamlcs 365

E_T!E'i%%eﬂltﬁll Cr|teo m n &

GSOS zalando BOOklng

ooooooooooooooooooooo

Why contribute Recommenders to the LF

Neutral holding ground
* Vendor-neutral, not for profit

Open governance model
* Transparent and open governance model
* |nstill trust in contributors and adopters in the management of the project
* Neutral management of projects' assets by the foundation

Growing community
* Increase visibility of project through LF ecosystem
* Increase contributors by converting new & existing users
* Opportunities to collaborate with other hosted projects

Recommendation Systems in Modern
Business and Academic Research

“35% of what consumers purchase on Amazon and 75% of what they watch on
Netflix come from recommendations algorithms”

McKinsey & Co

“60% of video clicks on the YouTube homepage comes from recommendations”
Emerj

“BestBuy reported an online sales growth of 23.7% due to a speedier checkout
process, better navigation, and relevant product recommendations”

CNBC

Recommendations Everywhere

History

2010 (Various data competitions)

1990s (Tapestry, Grouplens) Hybrid models with machine learning
Content based filtering LR, FM, GBDT, etc.
Collaborative filtering Pair-wise ranking

Explainable recommendation
Knowledge enhanced recommendation
Reinforcement learning

Transfer learning

2006 (Netflix prize) 2015 (Deep learning)
Factorization-based Models Flourish with neural models
SVD++ PNN, Wide&Deep, DeepFM, xDeepFM, etc.

Challenges in Recommendation Systems

Limited resource

There is limited reference
and guidance to build a
recommender system on

scale to support
enterprise-grade
scenarios

Fragmented solutions

Packages/tools/modules off-
the-shelf are very
fragmented, not scalable,
and not well compatible with
each other

Fast-growing area

New algorithms sprout
every day — not many
people have such
expertise to implement
and deploy a
recommender by using
the state-of-the-arts
algorithms

Description of
Recommenders

What is Recommenders

* Collaborative development efforts of Microsoft Cloud & Al data scientists,
Microsoft Research researchers, academia researchers etc.

e Github url: https://github.com/Microsoft/Recommenders

* Contents

 Utilities: modular functions for model creation, data manipulation, evaluation etc.
e Algorithms: SVD, SAR, ALS, NCF, Wide&Deep, xDeepFM, DKN etc.
* Notebooks: how-to examples for building end-to-end recommendation systems

https://github.com/Microsoft/Recommenders

Goals of Recommenders

* “Taking recommendation technology to the masses”

* Helping researchers and developers to quickly select, prototype, demonstrate,
and productionize a recommender system

Accelerating enterprise-grade development and deployment of a recommender
system into production

» Systematic overview of the recommendation technology from a pragmatic
perspective

 State-of-the-art academic research in recommendation algorithms

* Best practices (with example codes) in developing recommender systems

Best practice workflow

Recommenders
Pipeline

How do you want to
split: Do you have user
- Stratified? / item features?
Time dependent?

Even richer
feature set?

-
-y
-

What metrics do you
want to use to evaluate
your recommender?

Accuracy

I
I
I
|
v

30 .-|-'-':1 e |

mendations

30+ recommendation algorithms

Alternating Least Squares (ALS)

Attentive Asynchronous Singular Value Decomposition (A2SVD)
Cornac/Bayesian Personalized Ranking (BPR)

Cornac/Bilateral Variational Autoencoder (BiVAE)
Convolutional Sequence Embedding Recommendation (Caser)
Deep Knowledge-Aware Network (DKN)

Extreme Deep Factorization Machine (xDeepFM)

FastAl Embedding Dot Bias (FAST)

LightFM/Hybrid Matrix Factorization

LightGBM/Gradient Boosting Tree

LightGCN

GeolMC

GRU4Rec

Multinomial VAE

Neural Recommendation with Long- and Short-term User Representations (LSTUR)

Neural Recommendation with Attentive Multi-View Learning (NAML)

Neural Collaborative Filtering (NCF)

Neural Recommendation with Personalized Attention (NPA)
Neural Recommendation with Multi-Head Self-Attention (NRMS)
Next Item Recommendation (NextltNet)

Restricted Boltzmann Machines (RBM)

Riemannian Low-rank Matrix Completion (RLRMC)

Simple Algorithm for Recommendation (SAR)

Self-Attentive Sequential Recommendation (SASRec)

Short-term and Long-term Preference Integrated Recommender (SLi-Rec)
Multi-Interest-Aware Sequential User Modeling (SUM)

Sequential Recommendation Via Personalized Transformer (SSEPT)
Standard VAE

Surprise/Singular Value Decomposition (SVD)

Term Frequency - Inverse Document Frequency (TF-IDF)

Vowpal Wabbit (VW)

Wide and Deep

xLearn/Factorization Machine (FM) & Field-Aware FM (FFM)

Types of Algorithms in Recommenders

Python

Python + Spark

Python + GPU

SAR, SVD

ALS

NCF, FastAl, RBM

LightGBM

LightGBM

Wide and Deep

xDeepFM, DKN

Collaborative
filtering

Content-based
filtering

Hybrid

Recommenders Repository

H microsoft / recommenders Public

<> Code

O Issues 160

¥ main ~ ¥ 7 branches

1 Pull requests 2

12 tags

) Discussions

(® Actions

(@' miguelgfierro Merge pull request #1940 from microsoft/staging

.devcontainer

.github

contrib

docs

examples
recommenders
scenarios

tests

tools

.gitignore
readthedocs.yaml
AUTHORS.md
CODE_OF_CONDUCT.md

CONTRIBUTING.md

(rEErEErEir-EE-RE B BN BN BN B BN BN |

Adding codespace deployment (#1521)
Clean up

Restored url line to remove linebreaks
ssept

rerun and clean dataprep notebooks
updated standard vae.py

fixed typo

Install recommenders from GitHub
new docker images

update setup

clarification

simon

conduct

‘.

B Projects

& Watch 263

O wiki @ Security [+ Insights

Go to file

v 787ae3e 4 daysago %) 8,438 commits

2 years ago

5 days ago

10 menths ago
last year

5 months ago
2 months ago
last year

5 days ago
last year

2 years ago
last year

7 months ago
2 years ago

2 months ago

f.? Star

% Fork 2.8k -

About

Best Practices on Recommendation
Systems

& microsoft-recommenders.readthedocs.io...

microsoft python kubernetes

data-science machine-learning tutorial

deep-learning azure rating

jupyter-notebook artificial-intelligence
ranking recommender
recommendation-system
recommendation-engine recommendation
recommendation-algorithm

operationalization

Readme

MIT license
Code of conduct
Security policy
Activity

15.9k stars

263 watching

€ O s @B

2.8k forks

15.9k

Recommenders Library

| microsof‘t/recommenders Public ® Watch 263 % Fork 2.8k v Y% Star 15.9k v
<> Code () Issues 160 19 Pullrequests 2 UJ) Discussions () Actions [Projects [0 Wiki @ Security [~ Insights

£ main ~ recommenders / recommenders / (] Q Go to file t .

kone807 updated standard vaepy X 2575ed4 - 2 months ago ~ \Y) History
Name Last commit message Last commit date
[
[datasets rerun and clean dataprep notebooks 5 months ago
M evaluation addressing the format suggestions 8 months ago
0 models updated standard vae.py 2 months ago
W tuning Resolved flake8 issues and blacked 2 years ago
M utils update comment to be specific 3 months ago
(9 README.md README typos (#1646) last year

(3 _init_.py Prepare for new release last year

recommenders / recommenders / models / ncf / ncf_singlenode.py

Blame 45 lines (373 loc) - 15.7 KB

17 class NCF:
369 v def fit(self, data):
Xa I I l p e a S S 370 """Fit model with training data
371
372 Args:
373 data (NCFDataset): initilized Dataset in ./dataset.py
374 o
375
376 # get user and item mapping dict
377 self.user2id = data.user2id
378 self.item2id = data.item2id
379 self.id2user = data.id2user
380 self.id2item = data.id2item
381
382 # loop for n_epochs
383 for epoch_count in range(1, self.n_epochs + 1):
384
385 # negative sampling for training
386 train_begin = time()
387
388 # initialize
389 train_loss = []
3%0
391 # calculate loss and update NCF parameters
392 for user_input, item_input, labels in data.train_loader(self.batch_size):
393
394 user_input = np.array([self.user2id[x] for x in user_input])
395 item_input = np.array([self.item2id[x] for x in item_input])
396 labels = np.array(labels)
397
398 feed_dict = {
399 self.user_input: user_input[..., None],
400 self.item_input: item_input[..., None],
401 self.labels: labels[..., None]l,
402 }
403
404 # get loss and execute optimization
405 loss, _ = self.sess.run([self.loss, self.optimizer], feed_dict)
406 train_loss.append(loss)

407 train_time = time() - train_begin

Recommenders Notebook Examples

(] microsoft/ recommenders ' Public % Fork 2.8k - ¥¥ Star 15.9k -
<> Code (©) Issues 160 17 Pull requests 2) Discussions () Actions [Projects [0 wiki () Security [~ Insights
[¥ main ~ recommenders/examples/ 5 Q. Gotofile t

H, miguelgfierro rerun and clean dataprep notebooks X% 9abe98f- 5 months aga L) History

Name Last commit message Last commit date
00_quick_start rerun notebook 7 months ago
01_prepare_data rerun and clean dataprep notebooks 5 months ago
02_model_collaborative_filtering ﬁ. 6 months ago
02_model_content_based_filtering Update dkn_deep_dive.ipynb last year
02_model_hybrid Merge pull request #1706 from microsoft/miguel/lightfm last year
03_evaluate Update examples/03_evaluate/evaluation.ipynb 8 months ago
04_model_select_and_optimize Replace tf.logging in notebooks 2 years ago
05_operationalize add sanitize=true to svg link 5 months ago
06_benchmarks values 7 months ago
07_tutorials/KDD2020-tutorial Replace tf.logging in notebooks 2 years ago

[README.md replacing recodatasets url with new storage location 2 years ago

Value of Notebook Examples

* Notebooks can be used as a starting point for data scientists.

e Data scientists can replace the dataset downloaded in the notebook

with their own and easily get a recommendation system up and
running.

* They offer an efficient way to implement these algorithms for
research purposes, as POCs or in production.

Example Structure: Description + Code

D & main ~

Preview

Code

recommenders / examples / 02_model_collaborative _filtering / ncf_deep_dive.ipynb

Blame

@ 1149 lines (1149 loc) - 36 KB

1.1 The GMF model
In ALS, the ratings are modeled as follows:
7A'u,i = Qz;rpu

GMF introduces a neural CF layer as the output layer of standard MF. In this way, MF can be easily generalized and extended. For example,
if we allow the edge weights of this output layer to be learnt from data without the uniform constraint, it will result in a variant of MF that
allows varying importance of latent dimensions. And if we use a non-linear function for activation, it will generalize MF to a non-linear

setting which might be more expressive than the linear MF model. GMF can be shown as follows:
Ty = O (hT (g ® pu))

where @ is element-wise product of vectors. Additionally, a,.+ and h denote the activation function and edge weights of the output layer
respectively. MF can be interpreted as a special case of GMF. Intuitively, if we use an identity function for a,,: and enforce h to be a
uniform vector of 1, we can exactly recover the MF model.

1.2 The MLP model

NCF adopts two pathways to model users and items: 1) element-wise product of vectors, 2) concatenation of vectors. To learn interactions
after concatenating of users and items latent features, the standard MLP model is applied. In this sense, we can endow the model a large
level of flexibility and non-linearity to learn the interactions between p,, and g;. The details of MLP model are:

For the input layer, there is concatenation of user and item vectors:
21 = ¢1 (Pu, i) = [q:‘]
So for the hidden layers and output layer of MLP, the details are:
#1(21) = @ (W21 +b1),(1=2,3,...,L 1)
and:
fui = o (hT¢ (21-1))

where W, by, and aq,: denote the weight matrix, bias vector, and activation function for the I-th layer’s perceptron, respectively. For
activation functions of MLP layers, one can freely choose sigmoid, hyperbolic tangent (tanh), and Rectifier (ReLU), among others. Because

Raw |'_|,3

Example Structure: Description + Code

3.1 Load and split data

To evaluate the performance of item recommendation, we adopt the leave-one-out evaluation.

For each user, we held out his/her last interaction as the test set and utilized the remaining data for training. Since it is too time-
consuming to rank all items for every user during evaluation, we followed the common strategy that randomly samples 100 items that are

not interacted by the user, ranking the test item among the 100 items. Our test samples will be constructed by NCFDataset .

We also show an alternative evaluation method, splitting the data chronologically using python_chrono_split to achieve a 75/25%

training and test split.

df = movielens.load_pandas_df(
size=MOVIELENS_DATA_SIZE,
header=["userID", "itemID", "rating", "timestamp"]

)

df.head()

100% | INIEIIN| 2 81k/4.81k [00:00<00:00, 16.9kKB/s]

userlD itemID rating timestamp
0 196 242 3.0 881250949
1 186 302 3.0 891717742
2 22 377 1.0 878887116
3 244 51 2.0 880606923

4 166 346 1.0 886397596

train, test = python_chrono_split(df, ©.75)

Example Structure: Description + Code

3.3 Train NCF based on TensorFlow

The NCF has a lot of parameters. The most important ones are:

n_factors , which controls the dimension of the latent space. Usually, the quality of the training set predictions grows with as n_factors
gets higher.

layer_sizes , sizes of input layer (and hidden layers) of MLP, input type is list.
n_epochs , which defines the number of iteration of the SGD procedure. Note that both parameter also affect the training time.
model_type , we can train single "MLP" , "GMF" or combined model "NCF" by changing the type of model.

We will here set n_factors to4, layer_sizes to [16,8,4], n_epochs to 100, batch_size to 256. To train the model, we simply
need to call the fit() method.

model = NCF (
n_users=data.n_users,
n_items=data.n_items,
model_type="NeuMF",
n_factors=4,
layer_sizes=[16,8,4],
n_epochs=EPOCHS,
batch_size=BATCH_SIZE,
learning_rate=1le-3,
verbose=10,
seed=SEED

with Timer() as train_time:
model.fit(data)

print("Took {} seconds for training.".format(train_time.interval))

Took 615.3995804620008 seconds for training.

Example Structure: Description + Code

3.4.2 Generic Evaluation

We remove rated movies in the top k recommendations To compute ranking metrics, we need predictions on all user, item pairs. We

remove though the items already watched by the user, since we choose not to recommend them again.

with Timer() as test_time:

users, items, preds = [1, [1, []
item = list(train.itemID.unique())
for user in train.userID.unique():
user = [user] * len(item)
users.extend(user)
items.extend(item)
preds.extend(list(model.predict(user, item, is_list=True)))

all predictions = pd.DataFrame(data={"userID": users, "itemID":items, "prediction":preds})

merged = pd.merge(train, all predictions, on=["userID", "itemID"], how="outer")
all predictions = merged[merged.rating.isnull()].drop('rating’, axis=1)

print("Took {} seconds for prediction.".format(test_time.interval))

Took 2.7729760599977453 seconds for prediction.

eval_map = map_at_k(test, all_predictions, col_prediction="prediction', k=TOP_K)

eval _ndcg = ndcg_at_k(test, all predictions, col_prediction='prediction', k=TOP_K)
eval_precision = precision_at_k(test, all predictions, col prediction='prediction', k=TOP_K)
eval_recall = recall_at_k(test, all _predictions, col_prediction="prediction', k=TOP_K)

print("MAP:\t%f" % eval_map,

"NDCG:\t%f" % eval_ndcg,
"Precision@K:\t%f" % eval_precision,
"Recall@K:\t%f" % eval_recall, sep="\n")

MAP: ©.048144
NDCG: ©.198384
Precision@K: 0.176246

Recall@K: 0.098700

Recommenders Tests

PR gates are tests executed after doing a
pull request and they should be quick.

The nightly builds are tests executed
asynchronously and can take hours.

The objective is to validate that the code

: : Lt Some tests take so long that they cannot
is not breaking before merging it.

be executed in a PR gate, therefore they

i are executed asynchronously in the
@ Restricting cornac to 1.15.1 for issue with 1.15.4 #287 n ig ht Iy b u i I d S .

¥ simonzhaoms synchronize #1934 miguel/bug_cornac_numpy Success 39m 4s

@ get-test-groups

“python=3.7", k_001 5
© “python group-spark azureml-unit-tests.yml
@ ‘python=3.7", group_notebooks _sp... equest

@ “python=37", group_notebooks_sp...
@ ‘python=3.7", group_gpu_001
@ get-test-groups 3s © 24 jobs completed .
@ ‘python=3.7", graup_notebaoks_gp. . Build Type Branch Status Branch Status
Show all jobs

@ ’'python=3.7", group_notebooks_gp

Linux CPU main €) azureml-cpu-nightly |passi staging () azureml-cpu-nightly | passing

© ’'python=3.7", group_cpu_001

“python=3.7", group_notebooks_c| - - - "
: py‘ group) P Linux GPU main) azureml-gpu-nightly fpassing staging () azureml-gpu-nightly [passing
"python=3.8", group_spark_001
@ ‘“python=3.8", group_notebooks_sp... Linux Spark main () azureml-spark-nightly [passi staging i
© ‘python=3.8", group_notebooks _sp...

@ "python=3.8", group_gpu_001
@ 'python=3.8", group_notebooks_gp
@ "python=3.8", group_notebooks_gp

@ "python=3.8", group_cpu_001

Test Categories

Data validation tests: In the data validation tests, we ensure that the schema for input and output data for each function in the pipeline
matches the desired prespecified schema, that the data is available and has the correct size.

Unit tests: In the unit tests we just make sure the python utilities and notebooks run correctly. Unit tests are fast, ideally less than 5min and
are run in every pull request

Functional tests: These tests make sure that the components of the project not just run but their function is correct. For example, we want
to test that an ML model evaluation of RMSE gives a positive number.

Integration tests: We want to make sure that the interaction between different components is correct. For example, the interaction
between data ingestion pipelines and the compute where the model is trained, or between the compute and a database.

Smoke tests: The smoke tests are gates to the slow tests in the nightly builds to detect quick errors. If we are running a test with a large
dataset that takes 4h, we want to create a faster version of the large test (maybe with a small percentage of the dataset or with 1 epoch) to
ensure that it runs end-to-end without obvious failures. Smoke tests can run sequentially with functional or integration tests in the nightly
builds, and should be fast, ideally less than 20min.

Performance test: The performance tests are tests that measure the computation time or memory footprint of a piece of code and make
sure that this is bounded between some limits.

Responsible Al tests: Responsible Al tests are test that enforce fairness, transparency, explainability, human-centeredness, and privacy.

Security tests: Security tests are tests that make sure that the code is not vulnerable to attacks. These can detect potential security issues
either in python packages or the underlying OS, in addition to scheduled scans in the production pipelines.

Regression tests: In some situations, we are migrating from a deprecated version to a new version of the code, or maybe we are
maintaining two versions of the same library (e.g. TensorFlow v1 and v2). Regression tests make sure that the code works in both versions
of the code. These types of tests sometimes are done locally, before upgrading to the new version, or they can be included in the tests
pipelines if we want to execute them recurrently.

Recommenders Coding Guidelines

* Test Driven Development

* Do not Repeat Yourself

* Single Responsibility

* Python and Docstrings Style

* The Zen of Python

* Evidence-Based Software Design

* You are not going to need it

* Minimum Viable Product

* Publish Often Publish Early

* If our code is going to fail, let it fail fast

https://github.com/Microsoft/Recommenders/wiki/Coding-Guidelines

https://github.com/Microsoft/Recommenders/wiki/Coding-Guidelines

Options to Try Out Recommenders

____Options | Prerequisite ___| _____Pros | Cons

: Users can use tools they are Limited by the environment
Local machine

(Linux/Windows/MacOs) Jupyter notebook famlllf':\r with in the local (e.g. OS) ar.1d hardware of the
machine local machine (e.g. GPU)
Docker container Docker Portable and system- Bequwe Docker to be pre-
independent installed
Remote machine Users can build solutions

Jupyter notebook More costly solution

(Linux/Windows)

Spark compute
(Synapse/Databricks)

remotely

Efficient computation of big

St earmplie data workloads

More costly solution

£ \ \

N\

| w5

Recommendes*m the

Community

Recommenders pip Package

recommenders 1.1.1

v Latest version

pip install recommenders (R Released: Jul 20,2022

Microsoft Recommenders - Python utilities for building recommender systems

Navigation Project description

Recommender Utilities

“D Release history
This package contains functions to simplify common tasks used when developing and evaluating recommender
&L Download files systems. A short description of the submodules is provided below. For more details about what functions are
available and how to use them, please review the doc-strings provided with the code or the online documentation.

Project links Installation

A Homepage .
Pre-requisites
B Documentation

O wiki Some dependencies require compilation during pip installation. On Linux this can be supported by adding build-
essential dependencies:

Statistics
sudo apt-get install -y build-essential libpython<version>
GitHub statistics:

W Stars: 15850 where <version> should be the Python version (e.g. 3.6).

F Forks: 2754 On Windows you will need Microsoft C++ Build Tools

© Openissues: 160 For more details about the software requirements that must be pre-installed on each supported platform, see the

19 OpenPRs:2 setup guide.

Engagement with the Community

Collaborative development efforts of
* Microsoft Cloud & Al data scientists
* Microsoft Research researchers
e academic researchers
* data scientists from other enterprises

e 16K stars on GitHub, 2.8K forks.

 Recommenders is the most popular open-source repository in the field of
recommendation systems.

* Used by academics who submit papers to RecSys (the top conference on

recommendation systems) https://github.com/ACMRecSys/recsys-evaluation-
frameworks

* Featured in YC Hacker News, O’Reilly Data Newsletter, GitHub weekly trending list etc.

Engagement with the Community (contd.)

» Referenced in paperswithcode.com, towardsdatascience.com etc.

» 70 repositories (from outside Microsoft) depend on recommenders

Dependency graph

Dependencies Dependents Dependabot & Export SBOM

Repositories that depend on recommenders Package: recommend
[#] 71 Repositories) 2 Packages (3) Owner ~
‘ fleuryc / OC_Al-Engineer_P9_Books-recommandation-mobile-app w3 %o
M sopje 7 Ass2DL 70 %O
Freakinglackpet / FilmRecomendationSystem w0 %o
r / serendipity %0 %o
Freakinglackpot / RecommendationService w0 %o
chingfhen / E-commerce-Chatbot-Recommendation-System w0 %o

ymengxu / KP_RecSys_Eval w0 %o

Contributors

C:@JsE0
XBICES
\G\Q@l‘r Atvg
2P
béﬂ.@i:
GBI JE-EHD
)@ =L DY o
%UL Ug‘/o, ‘
PG e 0@
Ol NeeCe:
CHINPOO
T PIPCOANCE

e 89 contributors to date

* 7 maintainers

Summary

Recommendation systems are ubiquitous in e-commerce and other
industries.

Recommenders helps solve the challenge of easily building
recommendation systems.

The repository is composed of a library, examples in the form of
Jupyter notebooks and a test pipeline.

The open-source community has embraced and contributed to the
repository.

Future Opportunities

Implement new cutting-edge algorithms
from recommendations research, LLMs etc.

Performance improvements and upgrade of dependencies
(such as TensorFlow / PyTorch, Spark MLLib)

Customized examples for specific industry or research
scenarios

Thank you

Appendix

Algorithms from Microsoft Research

Deep learning based user
@Ld modeling

L Gy
T, @l‘c’ Deep learning based

BTl SN recommendation
T DA , -'\y@a:/%:'
i gD ed

:> Explainable
recommendation

Query Log based User Modeling

o e = = e e e e e e e e e e = = = e e e = = e e = e

/ ~ gifts for classmates \ / =) ~ groom to bride gifts |
< cool math games \ < tie clips
(1)

mickey mouse cartoon ~ philips shaver

~ shower chair for elderly ~ lipstick color chart

< presbyopic glasses < womans ana blouse

o - - - - - - - - - - - — - - —— — — ——

costco hearing aids Dior Makeup

Chuhan Wu, Fangzhao Wu, Junxin Liu, Shaojian He, Yongfeng Huang, Xing Xie, Neural Demographic Prediction using Search Query, WSDM 2019

Query Log based User Modeling

Different words may have

/ different importance

R (A —

/ birthday gift for grandson |
Different records have central garden street

different informativeness \ google

my health plan

Neighboring records may medicaid new York
have relatedness, while far medicaid for elderly in new York The same word may have different
ones usually not importance in different contexts

alcohol treatment

amazon.com

documentary grandson

youtube

Query Log based User Modeling

label
?

softmax

user representation

.- Q7 ' sentence-level attention

"STé sentence representation

a: word-level attention

AL

E- . ::‘“‘ /,‘,:)':_::':‘ h}'l gh

Bi-LSTM Notations:

Ay q; : the iz, query (or webpage title) from user’s
searching and browsing log

,.““‘,-N

Ci1 [Giz Cin Gin
a,, : the hidden vector for word-level attention
a, : the hidden vector for sentence-level attention
Word-level CNN Word-level CNN S .) .
s; : the hidden representation of the i;;, query (or
. o o o. webpage title)
i 2 N TN 4 : the hidden representation of the user
Embedding Embedding

) B e B e Bl] o

Explainable Recommendation Systems

Fog Harbor Fish House 1-800-FLOWERS.COM - Elegant Flowers for Lovers
a ﬂ a n 4703 reviews Ad - 1800Flowers.com - 40,100+ followers on Twitter

Ratings: Product Selection 4.5/5 - Price 4/5 - Customer Service 4/5
Their tan tan noodles are made of 1800flowers.com has been visited by 10K+ users in the past month

. T .. 1800flowers.com is rated #dd k4 (321,968 reviews)
magic. The chili oil is really appetizing.

However, prices are on the high side.

Model Transparency Effectiveness

P : Presentation
Explainability ersuasiveness

Trust Readability Quality

Feedback Aware Generative Model

Eyi~19()’i|xi; O)T(xi;)’i)

* Traditional Seg2Seq model (

[Xi) i|xi; 0
argernaxl_.[p(yllxl' 9) p(giotl)iflilites)
l

* Feedback aware model
_'i
argemax z Eyi~p(yi Ix;; g)r(xi, Vi) Feed

Forward

4 1 ~\ | Add & Norm ;
£dd & Norm Mult-Head

Feed Attention

Forward T} Nx
—_ | ==~
Add & Norm

Nx
f—>| Add & Norm | Vasked

Multi-Head Multi-Head
Attention Attention
Ad title, category, Ad title, Ad description, CTR \:—’ J L L—"_,)
keyword, sitelink title sitelink description Positional ! Positional
Encoding & Encoding
Input Output
Ad title: Flowers delivered today ' Elegant flowers for any occasion. Embedding Embedding
Category: Occasions & Gifts 100% smile guarantee! 1 T

Xx; (input) y; (output)

Extreme Deep Factorization Machine (xDeepFM)

Connect to output

»Compressed Interaction Network (CIN) ‘
* Hidden units at the k-th layer: R anon 1 T 1

Sum pooling Sum pooling Sum pooling

Hiy 1 m

Z Zwkh (XK1 °X?,)

i=1 j=1

m: # fields in raw data

D: dimension of latent space

H,,: # feature maps in the k-th hidden layer
x° : input data

x¥: states of the k-th hidden layer

» Properties

* Compression: reduce interaction space from O(mH_,) down to O(Hy,)
e Keep the form of vectors
* Hidden layers are matrices, rather than vectors
* Degree of feature interactions increases with the depth of layers (explicit)

Jianxun Lian et al, Combining explicit and implicit feature interactions for recommender systems, KDD 2018

Extreme Deep Factorization Machine (xDeepFM)

* Proposed for CTR prediction

y= O—(W?;neara +W§nnx§nn +WI§HP+ +b) £\, output unit
* Low-order and high-order feature 4
interactions: Pty TR
° L' . I' d d : I TT TT T7T | | . PIaiInDNN
inear: linear and quadratic | L ; |
. t t. | d Linear | I |_/ 5/ |
interactions (low order) | O b
* DNN higher order implicit interactions e | nbeddng
(black-box, no theoretical TR T T TR veianaow
understanding, noise effects) l—‘o—p-lm -0 _060-0 00 O)

 Compressed Interaction Network (CIN)
 Compresses embeddings
* High-order explicit interactions
* Vector-wise instead of bit-wise

[0,1,0,0,...,0][1,0][0,1,0,0,...,0][0,1,0,1,...,0]
N—— N——
userid gender organization interests

Jianxun Lian et al, Combining explicit and implicit feature interactions for recommender systems, KDD 2018

Approval of Recommenders as a Sandbox project

Proposed Resolution:

» Recommenders as a Sandbox project of the LF Al & Data Foundation is
hereby approved.

LILF Al & DATA

29JUN2023

Upcoming TAC Meetings

LILF Al & DATA

29JUN2023

Upcoming TAC Meetings

» July 13 - OPPO new sandbox project ShaderNN

> July 29 — Docarry proposal to move from Sandbox to Incubation, Tentative
Project review

Please note we are always open to special topics as well.

If you have a topic idea or agenda item, please send agenda topic requests to
tac-general@lists.lfaidata.foundation

LILF Al & DATA

29JUN2023

mailto:tac-general@lists.lfaidata.foundation

Open Discussion

LILF Al & DATA

29JUN2023

TAC Meeting Detalls

» To subscribe to the TAC Group Calendar, visit the wiki:
https://wiki.lfaidata.foundation/x/cQB2
> Join from PC, Mac, Linux, iI0S or Android: https://zoom.us/j/430697670

> Or iPhone one-tap:
» US: +16465588656,,430697670# or +16699006833,,430697670#

> Or Telephone:
» Dial(for higher quality, dial a number based on your current location):

» US: +1 646 558 8656 or +1 669 900 6833 or +1 855 880 1246 (Toll Free) or +1 877
369 0926 (Toll Free)

> Meeting ID: 430 697 670

y International numbers available: https://zoom.us/u/achYtcw7uN

LILF Al & DATA

29JUN2023

https://wiki.lfaidata.foundation/x/cQB2
https://wiki.lfai.foundation/x/XQB2
https://zoom.us/j/430697670
https://zoom.us/u/achYtcw7uN

Legal Notice

The Linux Foundation, The Linux Foundation logos, and other marks that may be used herein are owned by The Linux Foundation or its
affiliated entities, and are subject to The Linux Foundation’s Trademark Usage Policy at , as
may be modified from time to time.

Linux is a registered trademark of Linus Torvalds. Please see the Linux Mark Institute’s trademark usage page at
for details regarding use of this trademark.

Some marks that may be used herein are owned by projects operating as separately incorporated entities managed by The Linux
Foundation, and have their own trademarks, policies and usage guidelines.

TWITTER, TWEET, RETWEET and the Twitter logo are trademarks of Twitter, Inc. or its affiliates.
Facebook and the “f” logo are trademarks of Facebook or its affiliates.

LinkedIn, the LinkedIn logo, the IN logo and InMail are registered trademarks or trademarks of LinkedIn Corporation and its affiliates in the
United States and/or other countries.

YouTube and the YouTube icon are trademarks of YouTube or its affiliates.

All other trademarks are the property of their respective owners. Use of such marks herein does not represent affiliation with or authorization,
sponsorship or approval by such owners unless otherwise expressly specified.

The Linux Foundation is subject to other policies, including without limitation its Privacy Policy at http: / _ (and
its Antitrust Policy at . each as may be modified from time to time. More information about The
Linux Foundation’s policies is available at :

Please email with any questions about The Linux Foundation’s policies or the notices set forth on this slide.

LILF Al & DATA

29JUN2023

https://www.linuxfoundation.org/trademark-usage
https://lmi.linuxfoundation.org/
https://www.linuxfoundation.org/privacy
https://www.linuxfoundation.org/antitrust-policy
https://www.linuxfoundation.org/
mailto:legal@linuxfoundation.org

