
Multi-Device
ONNX Proposal

Micah Villmow



Motivation

● The trend in large language models is pushing beyond the 
boundaries of a single device.

● Mapping network ops to devices efficiently is important for high 
performance execution of neural networks.

● No way to represent this in ONNX.

● With the entire graph in ONNX, custom software to handle cross 
device communication is not required.



New Concepts

● Instance - A representation of an abstract computing machine that executes part 
of the ONNX network, i.e. a virtual device.

● Topology - The hierarchical ordering of instances such that the communication 
latency between two instances is lowest between an instance and its siblings.

● Tiling pattern - Vector of length rank(tensor), or scalar 1, that specifies the 
method of splitting the tensor into multiple tiles.

● Tile - A segment of a tensor that is produced by a network operation for a specific 
instance.

● Tiling assignment - Vector that maps from tiles to instances. 

● TensorDictionary - A Tensor representation that is assigned to one or more 
instances.



Model extension

Key Value Description

Model.topology TopoProto An optional extension that defines the communication network topology 
information this ONNX model was defined for.

TopoProto.instance_
count

int64 The maximum number of virtual ID's that can be assigned to tensors 
within ONNX model. This value MUST be positive. If this instance 
metadata is missing, then the assumed value can be one. 

TopoProto.instance_
map

int64[][] A list of lists, where the I`th entry contains a list of instance IDs that the 
I`th entry is connected to. The I`th entry implicitly contains its own 
instance, since an instance can always connect with itself, so specifying 
that entry is not required.



Topology Examples

Fully Connected Mesh: {4, [[1,2,3],[2,3,0],[3,0,1],[0,1,2]]}

Unidirectional Ring: {4, [[1],[2],[3],[0]]}

Tree: {7, [[1,2],[0,3,4],[0,5,6],[1],[1],[2],[2]]}

1-Centric star: {4, [[1],[0,2,3],[1],[1]]}

2-Centric star: {4, [[2],[2],[0,1,3],[2]]}

Disjoint rings w/ single crosslink:
{6, [[1,2],[0,2,3],[1,2],[2,4,5],[3,5][3,4]}

0 1

2 3

0 1

3 2

0 1
2

3

3 2
1

0

0
12

3456
0

1
2

3
4

5



Torus topology

1-D: {3, [[1,2],[0,2],[1,2]]}

2-D: {9, [[1,2,3,6],[0,2,4,7],[1,2,5,8],
[4,5,0,6],[3,5,1,7],[3,4,2,8],
[0,3,7,8],[1,4,6,8],[2,5,6,7]]

0 1 2

0 1 2

3 4 5

6 7 8

3-D: {27, [[1,2,3,6,9,I,],[0,2,4,7,A,J],[1,2,5,8,B,K],
[4,5,0,6,C,L,],[3,5,1,7,D,M],[3,4,2,8,E,N],
[0,3,7,8,F,O],[1,4,6,8,G,P],[2,5,6,7,H,Q],...]

9 A B

C D E

F G H

0 1 2

3 4 5

6 7 8

I J K

L M N

O P Q



Key Value Description

Tensor.tile_pattern
ValueInfo.tile_pattern

int64[] Optional field that contains the pattern that splits the tensor into multiple tiles 
that are mappable onto instances. The tile pattern has the same rank as the 
Tensor itself, or a scalar with value 1. If the tensor pattern is a scalar 1, then the 
entire tensor is the same size across all instances, since slicing the tensor by 1 
is an identity operation. If the pattern does not exist, then the tile pattern is left 
up to the importer to determine. For simplification, if the leading dimensions are 
all 1, then they can be omitted.

Tensor.tile_assignment
ValueInfo.tile_assignm
ent

int64[] Optional field that specifies the instances that the tiles are assigned to. If the 
tile_pattern is a scalar of value 1, then there can be multiple instances and the 
tensor is duplicated across all instances. Otherwise, the size of the 
tile_assignment list must be equal to the volume of the tile_pattern. If there are 
no tile_assignments, and a tile_pattern exists, then the assignment is [0, 
volume(tile_pattern)-1]. The I`th entry in the tile_assignment list is assigned the 
to the I`th tile after applying the tile_pattern size formula to the tensor shape. If 
the tile assignment entry is -1, then it is suppressed.

Tensor/ValueInfo extensions



Tile computations

entries = volume(pattern);
if (entries == 1) entries = rank(assignment);

Tile data start computation

for (j: entries) 
for (i: rank(S)) 

Vstart[j][i] = floor(((volume(pattern) != 1 ? j : 0) % pattern[i % rank(pattern)]) * Vorig[i] / 
pattern[i % rank(pattern)])

Tile data stop computation

for (j: entries) 
for (i: rank(S))

Vstop[j][i] = min(Vorig[i], floor((((volume(pattern) != 1 ? j : 0) % pattern[i % rank(pattern)]) + 1) * 
Vorig[i] / pattern[i % rank(pattern)]))

Tile data size computation

for (j: rank(assignment))
for (i: rank(S))

Vsize [assignment[j]][i] = Vstop[j][i] - Vstart[j][i]



Examples

Tensor Pattern Assignment Tile Start Tile Stop Tile Sizes

{1, 4} {1, 4}
count = 4

{0, 1, 2, 3}
Instances = 4

0: {0, 0}
1: {0, 1}
2: {0, 2}
3: {0, 3}

0: {1, 1}
1: {1, 2}
2: {1, 3}
3: {1, 4}

0: {1, 1}
1: {1, 1}
2: {1, 1}
3: {1, 1}

{1, 4} {1, 4}
count = 4

Default instance 
count

0: {0, 0}
1: {0, 1}
2: {0, 2}
3: {0, 3}

0: {1, 1}
1: {1, 2}
2: {1, 3}
3: {1, 4}

0: {1, 1}
1: {1, 1}
2: {1, 1}
3: {1, 1}

{7, 4} {5, 1}
count = 5

{3, 2, 4, 1, 0}
instances = 5

0: {5, 0}
1: {4, 0}
2: {1, 0}
3: {0, 0}
4: {2, 0}

0: {7, 4}
1: {5, 4}
2: {2, 4}
3: {1, 4}
4: {4, 4}

0: {2, 4}
1: {1, 4}
2: {1, 4}
3: {1, 4}
4: {2, 4}

{4, 4, 2, 2} {1, 3, 1, 1}
count = 3

{2, 0, 3}
instances = 3

0: {0, 1, 0, 0}
2: {0, 0, 0, 0}
3: {0, 2, 0, 0}

0: {4, 2, 2, 2}
2: {4, 1, 2, 2}
3: {4, 4, 2, 2}

0: {4, 1, 2, 2}
2: {4, 1, 2, 2}
3: {4, 2, 2, 2}

{2, 4, 8} {1}
count = 1

{3, 2}
instances = 2

2: {0, 0, 0}
3: {0, 0, 0}

2: {2, 4, 8}
3: {2, 4, 8}

2: {2, 4, 8}
3: {2, 4, 8}



TensorDictionaries(TDs)

Tensor for a single device

1-D Tensor duplicated across two devices

2-D Tensor split across two devices

3-D Tensor split across 6 devices
In

{1:0}

In
{1:0,1}

In
{2,1:0,1}

In
{3,2,1:5,4,3,2,1,0}

How to create TDs?
How to index into TDs?
How to extract Tensors from TDs?



Tensor Dictionaries

In0
{1:0}

In1
{1:1}

IJoin

Out
{1:0,1}

Create a TD without tiled

In0
{4:0,-1,-1,-1}

IJoin

Out
{4:0,1,2,3}

Combine tiled TD's

In1
{4:-1,1,-1,-1}

InTD
{4:-1,-1,2,3}

Extract per-device tensors

In
{4:0,1,2,3}

ISplit

Out0
{4:0,-1,-1,-1}

Out1
{4:-1,1,-1,-1}

Out2
{4:-1,-1,2,-1}

Out3
{4:-1,-1,-1,3}



Runtime evaluation

● Implementation performs input to output shape inference.

● Implementation performs output to input communication 
inference.
○ This is a naive implementation for exemplar purposes and can be further optimized.

○ If there is a mismatch on communication inference between input and output tile 
patterns
■ If input tile pattern is a scalar and output tile pattern is a vector, insert a broadcast, then tile the 

output per instance based on the earlier formulas.

■ If input tile pattern is a vector and output tile pattern is a scalar, insert an all-gather.

■ If input tile pattern is a vector and output tile pattern is a vector, insert an all-gather, then tile the 
output per instance based on the earlier formulas.



Questions?


